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1 General Information 

Prof. Ing. Giovanni Stea 

Dipartimento di Ingegneria dell'Informazione  

Largo L. Lazzarino 1, 56122 Pisa - Italy  

Ph. : (+39) 050-2217.653 (direct) .599 (switch)  

Fax : (+39) 050-2217.600 

E-mail: giovanni.stea@unipi.it 

 

 

Course book: whatever text on probability theory will probably be suitable. Most queuing theory 

books also have one or two chapters about probability theory, and they are often enough for a recap 

on the theory. 

These notes are based on: 

S. M. Ross, “Introduction to probability and statistics for engineers and scientists”, Elsevier, cap. 2-

6 

 

Pre-requisites: algebra (factorials, permutations) and mathematic analysis (integrals, derivatives)  

 

Module length: about 20 h, including exercises.  
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2 Probability Theory 

2.1 Sample spaces and events 

The concept of probability can be explained in several ways. The simplest way for engineers to 

visualize is that of relative frequency. If you repeat an experiment a very large number of times N, 

in independent conditions (meaning that the outcome of an experiment does not influence the out-

come of the subsequent ones), and call k the number of times when a certain event E of interest is 

observed, you can define the probability of that event as:  

𝑃(𝐸) = lim
𝑁→∞

𝑘 𝑁⁄  

In practice, you never have time to perform an infinite number of experiments. Thus, the probability 

of an event is often determined by some other knowledge, often a priori, of the experiment we ob-

serve. For instance, symmetry reasons. We know that the probability that the event “heads” occurs 

in a coin flip is 50% if the coin is perfectly symmetric (fair). We can give it for granted, without 

repeating the experiment N times. If we did, we would just observe what we already supposed for a 

large N.  

I have introduced some concepts without defining them formally. 

We define a random experiment as one whose outcome is not predictable a priori. For instance: 

1) The throw of a six-faced die  

2) A horse race 

3) An integrity test for an electronic device 

In the first case, I can define the outcome (or result) as the number which is engraved on the face 

opposite the one on which the die rests. In the second case, the order of arrival for the horses. In the 

third case, the time at which the device stops working.  

The concept of outcome lies in the mind of the observer. You can observe many things about an 

experiment. For instance, about the first one, I might be interested in the spatial position at which the 

die comes to rest, which is an entirely different thing. In the second experiment, I might be interested 

in the inter-arrival time of the horses.  

Once you define what an outcome is, you can define the sample space S. This is, in fact, the set of 

all possible outcomes of the experiment. In the three above cases, we have: 

1. 𝑆 = {1,2,3,4,5,6} 

2. Assuming we have seven horses, numbered in some order,  𝑆 =

{all the permutations of {1,2,3,4,5,6,7}} 

3. 𝑆 = [0,+∞) 
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In the first two cases, the sample space has a finite number of elements. In the third case, it has an 

infinite number of elements.  

We define an event E as a subset of the sample space. 

1. 𝐸 = {1,2,5} 

2. 𝐸 = {𝑥 ∈ 𝑆|horse no. 5 arrived last} 

3. The device breaks between 100 and 200 hours  

We say that an event E has occurred if the outcome of the experiment is included in E. For instance, 

if the order of arrival of the horses is 1, 2, 3, 4, 5, 6, 7, event E has not occurred. 

Among the events, two peculiar ones are: 

- The null event, which is represented by the empty set 

- The certain event, which is represented by the sample space S 

 

Events are sets. Hence, you can apply set algebra to events, using set algebra operators: 

- Union ∪: 𝐸 ∪ 𝐹, a set which includes the outcomes that are in either or both E and F 

- Intersection ∩: 𝐸 ∩ 𝐹 = 𝐸𝐹, a set that includes the outcomes that are both in E and F 

- Complement: 𝐸𝑐 = 𝑆\𝐸, the set of outcomes which are not in E. 

 

Furthermore, you can use all the properties that you already know for set algebra (they are the same 

as for Boole algebra, with slightly different names) 

- Union and intersection are associative and commutative operations 

- Complement is involutive.  

- De Morgan’s laws:  

{
(𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐

(𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐
 

De Morgan’s laws hold for an arbitrary number of sets, not just two. They can be readily proven using 

Venn’s diagrams. 

 

You should pay attention not to confuse between an event and an outcome. An outcome is an ele-

ment of the sample space. An event is a subset of the sample space. For discrete sample spaces, we 

obviously have subsets of just one element. Therefore you can associate an event to each outcome, 

i.e. a subset including only that outcome.  

However, you should keep the two concepts separate. 

 

Exercise 
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Let E, F, G be three arbitrary events. Find set-algebra expressions for the following occurrences. 

Two possible definitions of the sample space and events are the following: 

E E
F

F

G GS S
 

A word of advice: the likeliest mistake in probability theory is to misunderstand the text of an exer-

cise. Please take care when reading, because every word matters.  

a) Only E occurs 

a. The outcome is in E, but not in F and not in G. Thus, the answer is 𝐸𝐹𝑐𝐺𝑐 

b) Both E and G, but not F, occur 

a. 𝐸𝐺𝐹𝑐 

c) At least one of the events occurs 

a. 𝐸 ∪ 𝐹 ∪ 𝐺 

d) At least two of the events occur 

a. 𝐸𝐺 ∪ 𝐹𝐺 ∪ 𝐸𝐹 

e) All three occur 

a. 𝐸𝐹𝐺 

f) None of the events occur 

a. It’s the complement of c). Hence (𝐸 ∪ 𝐹 ∪ 𝐺)𝑐 = 𝐸𝑐𝐹𝑐𝐺𝑐 

g) At most one of them occurs 

a. It’s the complement of d) . Hence 

(𝐸𝐹 ∪ 𝐹𝐺 ∪ 𝐸𝐺)𝑐 =
(𝐸𝐹)𝑐(𝐹𝐺)𝑐(𝐸𝐺)𝑐 =
(𝐸𝑐 ∪ 𝐹𝑐)(𝐹𝑐 ∪ 𝐺𝑐)(𝐸𝑐 ∪ 𝐺𝑐)

 

h) Exactly two of them occur 

a. From d), you have to exclude that all three occurs. Hence,  

(𝐸𝐹 ∪ 𝐹𝐺 ∪ 𝐸𝐺) ⋅ (𝐸𝐹𝐺)𝑐. 

or, you can exclude the third set manually from each intersection, i.e.: 

𝐸𝐹𝐺𝑐 ∪ 𝐹𝐺𝐸𝑐 ∪ 𝐸𝐺𝐹𝑐. The two results equivalent, after some manipulations. 

i) At most three of them occur 

a. This is certain, since there is no way more than three events out of three can occur.   

Good hint on how to solve Proba-

bility Theory problems: when an 

event looks difficult to pinpoint:  

try the complement. 



Notes on probability theory (student version) – Giovanni Stea – last saved 16/10/2022 15:07:00 

8 

 

2.2 Axioms of probability 

Given the above definitions, you can lay down the three axioms of probability. Probability is a 

number associated to an event, which describes the relative frequency of that event. Thus: 

1. 0 ≤ 𝑃(𝐸) ≤ 1. 

2. 𝑃(𝑆) = 1. 

3. If 𝐸𝑖, 𝐸𝑗  are events such that 𝐸𝑖𝐸𝑗 = ∅ if 𝑖 ≠ 𝑗 (mutually exclusive events, or disjoint), then 

𝑃(⋃𝑖𝐸𝑖) = ∑ 𝑃(𝐸𝑖)𝑖 . 

- The first axiom states that the probability is actually a relative frequency, hence it is a number 

between zero and one.  

- The second axiom states that the sample space is the certain event, meaning that some outcome 

must occur when you run an experiment.  

- The third axiom states that the probability of the union of disjoint events is the sum of the prob-

abilities of the single events.  

For instance, if you throw a die, the probability that event 𝐸1 = {outcomeisanevenno. } occurs is 

1/2, and the probability that event 𝐸2 = {1,5} occurs is equal to 2/6. Given that the two events are 

disjoint (or mutually exclusive), then the probability that 𝐸1 ∪ 𝐸2 occurs is equal to 𝑃(𝐸1 ∪ 𝐸2) =

𝑃(𝐸1) + 𝑃(𝐸2) = 1 2⁄ + 1 3⁄ = 5 6⁄ . 

 

From the above axioms some useful properties can be derived, which I expect you to be able to apply 

from now on: 

1. 𝑃(𝐸𝑐) = 1 − 𝑃(𝐸). This is fairly obvious, given that the two events E, Ec are mutually exclusive 

(axiom 3) and their union is equal to the sample space (axiom 2). 

2. 𝑃(𝐸1 ∪ 𝐸2) = 𝑃(𝐸1) + 𝑃(𝐸2) − 𝑃(𝐸1𝐸2)  

This can be readily proved with Venn diagrams. 

S
E2E1

A
B

C
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𝑃(𝐸1 ∪ 𝐸2) = 𝑃(𝐴 ∪ 𝐵 ∪ 𝐶)

= 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶)

= [𝑃(𝐴) + 𝑃(𝐵)] + [𝑃(𝐵) + 𝑃(𝐶)] − 𝑃(𝐵)

= 𝑃(𝐴 ∪ 𝐵) + 𝑃(𝐵 ∪ 𝐶) − 𝑃(𝐵)

= 𝑃(𝐸1) + 𝑃(𝐸2) − 𝑃(𝐸1𝐸2)

 

Exercise  

28% of the American males smoke cigarettes. 7% smoke cigars. 5% smoke both. What is the per-

centage of non-smokers? 

Solution 

NB: instead of trying to “guess” the correct answer, try modeling the problem in terms of events, 

and then using set algebra to get the answer. There will soon come a time where you won’t be able 

to guess. 

 

Call E the event “smokes cigarettes” and F the event “smokes cigars”.  

𝑷(𝑬) = 𝟎. 𝟐𝟖, 𝑷(𝑭) = 𝟎. 𝟎𝟕, 𝑷(𝑬𝑭) = 𝟎. 𝟎𝟓 

The required quantity is 𝑃((𝐸 ∪ 𝐹)𝑐) 

𝑷((𝑬 ∪ 𝑭)𝒄) = 𝟏 − 𝑷(𝑬 ∪ 𝑭)

= 𝟏 − [𝑷(𝑬) + 𝑷(𝑭) − 𝑷(𝑬𝑭)]
= 𝟏 − 𝟎. 𝟐𝟖 − 𝟎. 𝟎𝟕 + 𝟎. 𝟎𝟓 = 𝟎. 𝟕

 

Thus, 70% of the Americans are non-smokers. 

 

2.3 Sample spaces having equally likely outcomes (uniform probability 

model) 

In some cases (many, actually), the sample space of a random experiment: 

a) Has a finite cardinality 𝑁 = |𝑆|,  

b) includes equally likely outcomes. 

For instance, the case of a dice throw or a coin flip, provided that they are fair. In this case, the 

probability of each outcome can only be equal to 𝑝 = 1 𝑁⁄ . 

To be precise, each of the N outcomes is included in an event 𝐸𝑖, 1 ≤ 𝑖 ≤ 𝑁, these events are mutually 

exclusive, and their union is the sample space S, hence it must be that the sum of their probabilities 

is 𝑁 ⋅ 𝑝 = 1. 

In this case, we are in a uniform probability model, and we talk about sample space with equally 

likely outcomes. In these cases (and in these only), the probability of an event E is: 

A, B, C are disjoint, 

hence I can sum their 

probabilities by the 3rd 

axiom 

Add and subtract P(B) 



Notes on probability theory (student version) – Giovanni Stea – last saved 16/10/2022 15:07:00 

10 

 

𝑃(𝐸) =
|𝐸|

𝑁
 

We already applied this property in the case of a dice throw, without defining it.  

For random experiments with equally likely outcomes, then, in order to define the probability of an 

event, it is enough to count the number of outcomes included in the event, and divide it by the 

cardinality of the sample space. “It is enough” does not mean that it is easy. We have to reflect on 

how to count, and to do this we introduce the basic principle of counting.  

2.3.1 Basic principle of counting 

Basic principle of counting 

Given an experiment C that is composed of two sub-experiments 𝐶1 and 𝐶2,having respectively 𝑁1 

and 𝑁2 possible outcomes, the number of possible outcomes of experiment C is equal to 𝑁1 ⋅ 𝑁2. 

 

This can be obviously generalized from 2 to k experiments, for any k. 

Given an experiment C that is composed of k sub-experiments 𝐶1…𝐶𝑘,each one having 𝑁1…𝑁𝑘  pos-

sible outcomes, the number of possible outcomes of experiment C is equal to ∏ 𝑁𝑖
𝑘
𝑖=1 . 

 

Example: 

Take an opaque urn with 6 black balls and 5 white balls. What is the probability that, extracting two 

at random (without replacing them), you get a black and a white one (whatever the order)? 

 

The first question that one should ask is “what is an outcome for this experiment?” In this case, it is 

a pair of balls, of whichever color. Call 𝑏1, . . . 𝑏11 the balls, and assume that balls 1 to 6 are black, 

and balls 7 to 11 white. The sample space is: 

𝑆 = {(𝑏𝑖, 𝑏𝑗)|1 ≤ 𝑖, 𝑗 ≤ 11,    𝑖 ≠ 𝑗} 

What is its cardinality? It can be computed by observing that the random experiment is indeed com-

posed of two subexperiments: 

- A first one, that consists in extracting a ball at random from a set of 11 

- A second one, that consists in extracting a ball at random from a set of 10 

By the principle of counting, we have 11 ⋅ 10 = 110 possible outcomes. Each one of these is obvi-

ously equally likely, since nothing allows us to distinguish the spheres when we extract them (the 

meaning of “at random” is exactly this).  Thus, we are in a UPM. 

We need to define the event that interests us, and compute the number of outcomes that belong to that 

event. Our event is: 
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𝐸 = {(𝑏𝑖, 𝑏𝑗), 1 ≤ 𝑖 ≤ 6,7 ≤ 𝑗 ≤ 11} ∪ {(𝑏𝑖, 𝑏𝑗), 7 ≤ 𝑖 ≤ 11,1 ≤ 𝑗 ≤ 6} 

Recall that order does not matter.  

Each subset has 6 ⋅ 5 = 30 elements. Hence, |𝐸| = 60, and 𝑃(𝐸) = 6 11⁄ . The last passage is licit 

since results are equally likely. 

 

Note: if we allowed for replacement of a ball after the first extraction, I would have 𝐸′ = 𝐸 (the 

event that interests me has the same cardinality), but 𝑁′ = 11 ⋅ 11 > 𝑁. In this case, we would have 

𝑃(𝐸′) = 60 121⁄ . 

 

Exercise: 

You can line up on a shelf 10 books: 4 are mathematics books, 3 are physics books, 2 are informatics 

books, and 1 is a chemistry book. Suppose you line them up at random. What is the probability that 

they end up sorted by subject? 

 

Solution 

For this experiment, the outcome is a permutation of ten books. We are again in a case of experiment 

having equally likely outcomes. The sample space is the set of all possible orderings of 10 books. Its 

cardinality can be computed by the basic principle of counting. There are 10 subexperiments, and the 

first one has 10 outcomes, the 2nd has 9 outcomes, etc. etc. Therefore, 𝑁 = 10 ⋅ 9 ⋅. . .⋅ 2 ⋅ 1 = 10!. 

The expression 𝑥! is called “x factorial”, and it is the product of all numbers from 1 up to and in-

cluding x. That number counts all the permutations (sequences) of x objects. For convenience, it is 

0! = 1.  

Now we have the denominator in the fraction. In order to get the numerator as well, we need to count 

the outcomes in the event whose probability we want to evaluate.  

Let us start by considering one particular ordering of the subjects (e.g., MPIC). How many ways are 

there to sort books according to that subject order? 

The answer is: all the possible permutations of 4 maths books, which are 4!, times all the permutations 

of physics books, which are 3!, etc. 

Thus, for that ordering of subjects, we have 𝐺 = 4! ⋅ 3! ⋅ 2! ⋅ 1! different orderings of books that be-

long to the event.  

Now, how many ways are there to sort 4 subjects? There are 4! (again by the basic principle of count-

ing). Therefore, |𝐸| = 𝐺 ⋅ 4!, and: 
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𝑃(𝐸) = |𝐸| 𝑁⁄ =
4! ⋅ 4! 3! 2!

10!
=

1

525
 

 

2.3.2 Permutations and subsets of known cardinality  

In the previous exercise we have reasoned about counting the permutations of n objects. The basic 

principle of counting can also be used to solve the following problem: 

How many different permutations of k elements can I extract  

from a set of n elements (𝒏 ≥ 𝒌)? 

• For the first element, there are n possible choices.  

• For the 2nd element, there are n-1. 

• … 

• For the kth element, there are n-k+1=n-(k-1) 

Thus, I can select k elements in 𝑛 ⋅ (𝑛 − 1) ⋅. . .⋅ (𝑛 − 𝑘 + 1) = 𝑛! (𝑛 − 𝑘)!⁄ = 𝑆𝑘,𝑛 possible modes. 

This is the number of permutations of k elements. Observe that, if k=n, you obtain the same result 

as the previous exercise, since 0! = 1, and there are n! permutations of n objects.  

Let us now answer the following question, which is related to the former: 

How many different subsets of k elements can I extract 

from a set of n elements (𝒏 ≥ 𝒌)? 

 

First of all: are the two questions any different? Yes, they are. In a permutation, the order of the 

elements matters. In a subset, it does not. Two different permutations of the same k elements are 

indeed the same subset. Therefore, the answer must be different as well. 

The number 𝑆𝑘,𝑛 that answer the other question is a good starting point in any case. I must keep into 

account the fact that in a subset the order of the elements does not matter. Hence, all the sequences 

that have the same elements permuted in a different order are the same subset. This means that ex-

pression 𝑆𝑘,𝑛 counts the same subset several times, hence I have to divide it by some other number 

in order to get the result.  

Assume that you want to count the number of 3-letter subsets of the alphabet, i.e. n=26, k=3. Using 

the above approach, the same subset {𝐴𝐵𝐶} can be obtained from the following permutations (mind 

the brackets: curly ones for sets, angular brackets for permutations):  

⟨𝐴𝐵𝐶⟩, ⟨𝐴𝐶𝐵⟩, ⟨𝐵𝐴𝐶⟩, ⟨𝐵𝐶𝐴⟩, ⟨𝐶𝐴𝐵⟩, ⟨𝐶𝐵𝐴⟩ 

This is a composite experiment, with 

k subexperiments, etc. 
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The number of permutations (counted in 𝑆𝑘,𝑛) that yield the same subset is itself the number of per-

mutations of k elements, i.e., 𝑘 ⋅ (𝑘 − 1) ⋅. . .⋅ 2 ⋅ 1 = 𝑘!, again by the basic principle of counting. 

Therefore, the answer to the last question is: 

𝑆𝑘,𝑛
𝑘!

=
𝑛!

𝑘! ⋅ (𝑛 − 𝑘)!
= (

𝑛
𝑘
) 

The last expression is so important that it deserves a name of its own: it is called binomial coefficient, 

since it appears within Newton’s binomial formula: 

(𝑎 + 𝑏)𝑛 =∑(
𝑛
𝑘
) ⋅ 𝑎𝑘 ⋅ 𝑏(𝑛−𝑘)

𝑛

𝑘=0

 

Let us briefly recall some useful properties of binomial coefficients, that we will use in the follow-

ing: 

1. (
𝑛
𝑘
) = 0    if  𝑛 < 𝑘    (this is a definition, not a property) 

2. (
𝑛
𝑘
) = (

      𝑛
𝑛 − 𝑘

) ,      𝑛 ≥ 𝑘  (obvious, given the definition). It also has an intuitive rationale: when-

ever you find a way to extract k elements from a set of n, you are also defining a way to extract the 

remaining n-k. Hence the two numbers must be equal . 

3. (
𝑛
0
) = (

𝑛
𝑛
) = 1   (it follows from the definition and from 0! = 1) 

4. (
𝑛
𝑘
) = (

𝑛 − 1
𝑘 − 1

) + (
𝑛 − 1
    𝑘

) ,      𝑛 ≥ 𝑘  (recursive method for computing factorials; prove it as 

an exercise). 

 

Exercise 

A group of 5 boys and 10 girls are lined up in random order 

a) What is the probability that the person in the 4th position is a boy? 

b) What about the person in the 12th position? 

c) What is the probability that Adam (a boy) is in the 3rd position? 

 

Solution 

What is the outcome? It’s a sequence of 15 people. Are we in a UPM? Yes, since no sequence is 

more likely than another. So, we just need to count i) all the sequences and ii) all the ones that we 

like, in order to get the result.  

First of all, we observe that, if the ordering is random, there is nothing special about the 4th or the 12th 

positions, so the answer to questions a) and b) must be the same.  
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There is a quick, intuitive answer, which can be found as follows: the probability must be the same 

as the one of selecting one person at random and finding a boy, which is 5/15.  

Let’s do things by the book, in any case, and confirm the intuition by the correct method (never 

trust intuition when you do probability exercises). 

We are in a uniform probability model (all permutations are equally likely). The number of possible 

permutations of 15 people is 15!, which is the denominator of the fraction that we want to express.  

For questions a) and b), the cardinality of the event that we are looking for can be computed as fol-

lows: 

- There are two sub-experiments. The first one is “choose one boy to put in the 4th (12th) position 

from a set of 5 boys. The second one is “choose any possible permutation of the remaining 14 

people”. 

- how many subsets of 1 boy can you extract from a set of 5 boys? The answer is (
5
1
) = 5. 

- The number of permutations of 14 people (15 minus one boy) is 14!.  

- Therefore, |𝐸| = 5 ⋅ 14!, E being the event “a boy is in the 4th (12th position)” 

In a uniform probability model, the probability of E is therefore: 

𝑃(𝐸) =
|𝐸|

𝑁
=
5 ⋅ 14!

15!
=
5

15
 

Again, there is no difference between two positions, hence the answer to a) and b) is the same. 

 

As for c), the question is slightly different. We don’t want just any boy in the 3rd position. Give the 

boys names, e.g. Adam, Bob, Charlie, Dan, Eric. We want (say) the probability that Adam is in a 

given position, the 3rd. Now, intuition says that: 

i) Adam must be somewhere; 

ii) there is nothing peculiar about the 3rd position, which would make it more/less likely for Adam to 

be there instead of anywhere else. 

Thus, the answer can only be 𝑃(𝐹) = 1 15⁄ . Obviously, it is the same for any boy and any position. 

Furthermore, it does not depend on the number of boys and girls, but only on the number of positions. 

If the boys were 13 and the girls 2, it would still be the same. 

The (slightly longer) way to get to the same result is to observe that there are 15! permutations, 14! 

of which have Adam in the 3rd position, so the answer is 𝑃(𝐹) = 14! 15⁄ ! = 1 15⁄ . 

 

 

Exercise 
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Let’s make a variation on the above exercise. Suppose that you have n boys/girls (sex does not matter 

here), and you want to make a sorted line of only k of them (with 𝑘 ≤ 𝑛), picking them at random 

from the set of n. Answer the following questions: 

a) what is the probability that Adam is in the 1st position? 

b) Is it the same probability that any particular boy is in any position (up to the kth)? 

c) What is the probability that a particular boy ends up being part of the line? 

 

Solution 

a) there are 𝑆𝑘,𝑛 = 𝑛! (𝑛 − 𝑘)!⁄  sequences of k boys from a set of n. If you put Adam in the first 

position, then you have 𝑆𝑘−1,𝑛−1 = (𝑛 − 1)! [(𝑛 − 1) − (𝑘 − 1)]!⁄ = (𝑛 − 1)! (𝑛 − 𝑘)!⁄  sequences 

of k-1 boys to be extracted from the remaining n-1 boys. Then, the answer is: 

𝑃(𝐸) =
𝑆𝑘−1,𝑛−1
𝑆𝑘,𝑛

=
(𝑛 − 1)! (𝑛 − 𝑘)!⁄

𝑛! (𝑛 − 𝑘)!⁄
=
(𝑛 − 1)!

𝑛!
=
1

𝑛
 

This makes perfect sense intuitively, since Adam has the same chance as everyone else to be picked 

up as the first liner. Note that the probability does not depend on k, which makes perfect sense as 

well: the fact that Adam is picked up as the first in the line cannot depend on how long the line is.  

 

b) of course it is the same. You just repeat the same argument, and you get to the same solution. The 

lines where Adam is (say) in the 2nd positions are the same number as those where he is in the 1st 

position. The same goes for any other boy.  

 

c) Intuitively, this answer must depend on both k and n. For instance, if k=n, then we are certain that 

Adam will be somewhere along the line. If, instead k<n, he can be left out. Moreover, the closer k 

gets to n, the higher his chances will be.  

To answer the question, consider that there are 𝑆𝑘,𝑛 = 𝑛! (𝑛 − 𝑘)!⁄  sequences of k boys from a set of 

n. The sequences where Adam is in the first position are 𝑆𝑘−1,𝑛−1. So are those where Adam is in the 

second, third, … kth position. These sequences are mutually exclusive (Adam cannot be in two posi-

tions at the same time). Hence, the answer is: 

𝑘 ⋅ 𝑆𝑘−1,𝑛−1
𝑆𝑘,𝑛

=
𝑘

𝑛
 

The result makes sense, since it is coherent with our early intuition. Moreover, if k=1, it says that 

Adam has a 1/n chance of being selected, which is true. If 𝑘 = 𝑛 − 1, then we observe that Adam has 

a 1/𝑛 chance not to be selected, which is also true. 
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Exercise 

A basketball team is composed by 6 black and 6 white players. They have to sleep in a hotel for an 

away match, and they are paired at random in double rooms. What is the probability that in every 

room you only get players of the same color? 

 

Solution 

This is an exercise where intuition does not get us very far, hence we must go by the book.  

What is the outcome of this experiment? It is a set of six subsets of two elements, e.g. 

{{𝐴, 𝐵}, {𝐶, 𝐷}. . . , {𝐾, 𝐿}}, which means that 𝐴 and 𝐵 are in the same room (whichever the room num-

ber), since we don’t care about room numbers. Furthermore, (𝐴, 𝐵) and (𝐵, 𝐴) are the same pair, 

i.e. the elements of a pair are unordered (hence we have sets and not sequences of 2 elements). The 

sample space is the set of all those outcomes, which are sets themselves. 

We are in a uniform probability model, since people are paired at random. Hence the trick is to find: 

a) how large the sample space is; 

b) how many outcomes belong to the event whose probability I want to compute. 

Let’s get through point a). This is a composite experiment, with 6 subexperiments. There are (
12
2
) 

ways to choose the first couple, (
10
2
) ways to choose the 2nd, etc. The number of ways to select the 

six couples is: 

(
12
2
) ⋅ (

10
2
) ⋅ (

8
2
) ⋅ (

6
2
) ⋅ (

4
2
) =

12!

26
 

However, this is not the number of outcomes (once we have defined the outcomes as above). In fact, 

if we multiply the above numbers, we are implicitly saying that order matters in the room allocation: 

for each outcome where AB are in room 1 and CD are in room 2, there will be another one where CD 

and AB are swapped. Therefore, we must divide the above number for the number of different per-

mutations of six rooms, i.e. by 6!. The correct number is: 

|𝑆| =
12!

26 ⋅ 6!
 

Now, we need to count the outcomes within the event that we are interested in. These are all the 

possible ways to put 6 white players in 3 rooms, and 6 black players in 3 rooms. These are exactly 

the same problems as above, with different numbers, hence the solution can be written readily: 
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𝐶 =
6!

23 ⋅ 3!
 

Therefore, the result is: 

𝑃(𝐸) =
𝐶2

𝑁
=

5

231
 

 

2.4 Conditional probability 

In many cases it is useful to compute the probability of an event E knowing that some other event F 

has occurred. In this case, we talk about conditional probability.  

𝑃(𝐸|𝐹) (probability of E given F, or conditioned to F) 

Conditional probability allows you to re-evaluate the probability that an event E occurs, given that 

you have more information (i.e., you know that some other event F that may influence E has oc-

curred). 

For instance, when you throw two dice, the probability that event 𝐸 “the sum of the two upward faces 

is larger than 9” is equal to: 

𝑃(𝐸) =
|𝐸|

𝑁
=
|{(5,5), (5,6), (6,5), (6,6), (6,4), (4,6)}|

|{(𝑥, 𝑦)|1 ≤ 𝑥 ≤ 6,1 ≤ 𝑦 ≤ 6}|
=
6

36
=
1

6
 

Which was obtained by applying the basic principle of counting, given that each of the 36 results (x,y) 

is equally likely. 

Suppose now that you know that the first die is equal to 2.  

- What is the probability that the sum of the two dice is larger than 9, given that the first one is 2? 

The answer is obviously zero, seeing as there is no way that we can obtain more than 9 with a 

six-faced die. We will justify this more rigorously in a minute. 

- What is the probability that the sum of the two dice is larger than 9, given that the first one is 5? 

Before giving a formal answer, we observe that, if we know that the first die is 5, then the proba-

bility is going to be higher. We have excluded many “low” values of the first die which would 

not allow us to get to the desired result.  

To answer the 2nd question formally, let us define the event F as “the first die is equal to 5”. 

S

EF Sum >9
First die 

= 5

 

This can be seen as a composite ex-

periment as well. The two subexper-

iments are: 

1) Arrange six black players in 

3 pairs 

2) Arrange six white players in 

3 pairs 

And each subex. has 𝐶 outcomes. 
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I will have to count the outcomes within the intersection of the two events, and relate them not to 

the number of outcomes in S, but to the number of outcomes in F. This is because the phrase “given 

F” means that I have already excluded all the outcomes in Fc.   

With this in mind, I can define: 

𝑃(𝐸|𝐹) =
𝑃(𝐸𝐹)

𝑃(𝐹)
 

Note that the conditional probability verifies the basic condition that we ask of probabilities, i.e. that  

0 ≤ 𝑃(𝐸|𝐹) ≤ 1. It does because 𝐸𝐹 ⊆ 𝐹, hence 𝑃(𝐸𝐹) ≤ 𝑃(𝐹). Conditional probability is only de-

fined when 𝑃(𝐹) > 0 (it would make no sense to condition to an impossible event). 

In the above example, 𝐹 = {1𝑠𝑡dieequalto5}, 𝐸𝐹 = {(5,6), (5,5)}, and we straightforwardly obtain 

𝑃(𝐹) = 1 6⁄ , 𝑃(𝐸𝐹) = 2 36⁄ = 1 18⁄ . Hence,  

𝑃(𝐸|𝐹) =
1 18⁄

1 6⁄
=
1

3
 

Note that 𝑃(𝐸|𝐹) > 𝑃(𝐸), as we expected. 

 

As for the first question (sum >9 | first die is 2), the intersection of the two events is the null event, 

whose probability is zero. Hence the conditional probability is zero as well, which matches our intu-

ition.  

 

Exercise 

In a group of transistors there are 5 defective ones (that simply cannot be turned on), 10 unreliable 

(that stop working after a couple of hours), and 25 working ones. What is the probability that, having 

chosen one transistor at random, it is a working one, given that it has already worked for 5 minutes? 

 

Solution 

Call E the event “working transistor” and F the event “non defective transistor”. We have to compute: 

𝑃(𝐸|𝐹) =
𝑃(𝐸𝐹)

𝑃(𝐹)
=
𝑃(𝐸)

𝑃(𝐹)
=

25 40⁄

(25 + 10) 40⁄
=
5

7
 

Note that 𝑃(𝐸) = 25 40⁄ = 5 8⁄ , hence we are a little more confident that the transistor will be work-

ing if it has already worked for 5 minutes. In fact, we have just excluded that it is defective.  

 

 

Exercise 

- 52% of the students of one college are female 
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- 5% of the students are majoring in Computer Engineering 

- 2% of the students are female majoring in Computer Engineering 

Take a student at random, and compute the probability that: 

a) It’s female, given that it’s majoring in Computer Engineering 

b) It’s majoring in Computer Engineering, given that it’s female. 

 

Solution 

a) 𝑃(𝐹|𝐼) =
𝑃(𝐹𝐼)

𝑃(𝐼)
=

2

5
,  

b) 𝑃(𝐼|𝐹) =
𝑃(𝐹𝐼)

𝑃(𝐹)
=

2

52
=

1

26
 

 

2.4.1 Total probability theorem and Bayes’ formula  

Conditional probability is an extremely useful tool in practice, because it allows you to compute 

unconditional probability in an easy way. Let us see how. 

Event E can always be written in terms of another event F as follows 

𝐸 = (𝐸 ∩ 𝐹) ∪ (𝐸 ∩ 𝐹𝑐) 

A simple Venn’s diagram is enough to convince you of this. 

E
F

cE F

S

E F

 

The two events between parentheses are mutually exclusive, since 𝐹 and 𝐹𝑐 are mutually exclusive. 

Therefore, by the third axiom of probability: 

𝑃(𝐸) = 𝑃(𝐸𝐹) + 𝑃(𝐸𝐹𝑐) 

By substituting the expression of the two addenda in terms of conditional probability, assuming 𝐹 

and 𝐹𝑐 as conditioning events, we obtain: 

𝑃(𝐸) = 𝑃(𝐸|𝐹) ⋅ 𝑃(𝐹) + 𝑃(𝐸|𝐹𝑐) ⋅ 𝑃(𝐹𝑐)

= 𝑃(𝐸|𝐹) ⋅ 𝑃(𝐹) + 𝑃(𝐸|𝐹𝑐) ⋅ [1 − 𝑃(𝐹)]
 

Where the last passage is given by the fact that 𝐹 ∪ 𝐹𝑐 covers the whole sample space. 

This expression can be generalized to the case of N mutually exclusive events, whose union covers 

the whole sample space.  



Notes on probability theory (student version) – Giovanni Stea – last saved 16/10/2022 15:07:00 

20 

 

Given 𝐹1, . . . . , 𝐹𝑁, such that ⋃ 𝐹𝑖
𝑁
𝑖=1 = 𝑆, and 𝐹𝑖 ∩ 𝐹𝑗 = ∅ if 𝑖 ≠ 𝑗, (i.e., given a way to slice S in mu-

tually disjoint events), we can compute the probability of an event E as: 

𝑃(𝐸) =∑𝑃(𝐸𝐹𝑖)

𝑁

𝑖=1

=∑𝑃(𝐸|𝐹𝑖) ⋅ 𝑃(𝐹𝑖)

𝑁

𝑖=1

 

S

E
Fi

Fj

 

The above formula is called Theorem (or Law) of Total Probability. It is interesting to ask oneself 

if this is of any practical usefulness, given that it seems to require more information to get to the 

same result. The truth is that it is often very hard to estimate 𝑃(𝐸), but it is often easy enough to 

estimate 𝑃(𝐸|𝐹𝑖) for some events 𝐹𝑖 whose probability is known. This makes the total probability 

law quite useful in practice.  

 

Example 

There are two classes of people, those that are accident-prone, and those that are not. An insurance 

company knows that accident-prone people have 40% probability of having an accident in a year, and 

non-accident-prone have 20% probability. They also know that 30% of the drivers are accident-prone.  

What is the probability that a new insurance policy subscriber will have an accident next year? 

 

Call A the event “to have an accident in the next year”, and B “to be accident-prone”. We want to 

know 𝑃(𝐴), which is difficult to estimate. However, we know 𝑃(𝐵), 𝑃(𝐴|𝐵), 𝑃(𝐴|𝐵𝑐), hence we can 

readily apply the total probability theorem: 

𝑃(𝐴) = 𝑃(𝐴|𝐵) ⋅ 𝑃(𝐵) + 𝑃(𝐴|𝐵𝑐) ⋅ 𝑃(𝐵𝑐)

= 𝑃(𝐴|𝐵) ⋅ 𝑃(𝐵) + 𝑃(𝐴|𝐵𝑐) ⋅ [1 − 𝑃(𝐵)]
= 0.4 ⋅ 0.3 + 0.2 ⋅ 0.7
= 0.26

 

 

 

Bayes’ Theorem uses conditional probabilities, and is expressed as follows: 
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Given 𝐹1, . . . . , 𝐹𝑁 (hypotheses), such that ⋃ 𝐹𝑖
𝑁
𝑖=1 = 𝑆, and 𝐹𝑖 ∩ 𝐹𝑗 = ∅ if𝑖 ≠ 𝑗 . Of these hypotheses, 

you know the a priori probability 𝑃(𝐹𝑗). Now, an event E occurs that may be due to some of the above 

hypotheses. The fact that event E has occurred modifies my knowledge about the hypotheses as fol-

lows (a posteriori probability): 

𝑃(𝐹𝑗|𝐸) =
𝑃(𝐸𝐹𝑗)

𝑃(𝐸)
=

𝑃(𝐸|𝐹𝑗) ⋅ 𝑃(𝐹𝑗)

∑ 𝑃(𝐸|𝐹𝑖) ⋅ 𝑃(𝐹𝑖)
𝑁
𝑖=1

 

Bayes was a philosopher. This formula describes how the confidence about a hypothesis 𝐹𝑗 is mod-

ified by the fact that an event 𝐸 has occurred, given that 𝐸 could be influenced by that hypothesis.  

 

Exercise 

A laboratory test to spot a particular blood disease is 99% accurate for those that are ill with that 

disease. However, the test has a meager 1% false positive rate, meaning that if you are not ill, in 1% 

of the cases the test will say that you are.  

Given that 0.5% of the population has that disease, what is the probability that you will have the 

disease if the test finds you positive? 

 

Solution 

Call D the event “the subject is ill with the disease”, and P the event “the test is positive”. We have: 

- 𝑃(𝑃|𝐷) = 0.99 (test accuracy) 

- 𝑃(𝑃|𝐷𝑐) = 0.01 (false positive rate) 

- 𝑃(𝐷) = 0.005  

𝑃(𝐷) is the a priori probability that one has the disease, as given by statistics on the population. We 

want to compute 𝑃(𝐷|𝑃), i.e. the a posteriori probability that one has the disease, as modified by the 

fact that that person has been detected positive by the blood test. We expect that 𝑃(𝐷|𝑃) > 𝑃(𝐷), 

since the test is aimed at giving a higher confidence. 

By Bayes’ formula, we have: 

𝑃(𝐷|𝑃) =
𝑃(𝐷𝑃)

𝑃(𝑃)
=
𝑃(𝑃|𝐷) ⋅ 𝑃(𝐷)

𝑃(𝑃)

=
𝑃(𝑃|𝐷) ⋅ 𝑃(𝐷)

𝑃(𝑃|𝐷) ⋅ 𝑃(𝐷) + 𝑃(𝑃|𝐷𝑐) ⋅ 𝑃(𝐷𝑐)

=
𝑃(𝑃|𝐷) ⋅ 𝑃(𝐷)

𝑃(𝑃|𝐷) ⋅ 𝑃(𝐷) + 𝑃(𝑃|𝐷𝑐) ⋅ [1 − 𝑃(𝐷)]

 

Now we have all the numbers, and we can substitute them into the formula: 
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𝑃(𝐷|𝑃) =
0.99 ⋅ 0.005

0.99 ⋅ 0.005 + 0.01 ⋅ 0.995
≈ 0.332 

The result seems surprising, given that the test is very accurate. However, it makes perfect sense if 

you reflect on it a bit. 0.5% means “1 every 200”. Every 200 people:  

- 1 person has the disease, and will be diagnosed as ill with 99% probability, i.e. almost cer-

tainly 

- 199 people are perfectly healthy. Of these, 199 ⋅ 0.01 ≈ 2 will be false positives.  

Thus, on each three positives, two are false ones.  

In Bayes’ terms, knowing that an event P has occurred modifies my opinion on the hypothesis D. 

Before running the test, I could only think that there was 𝑃(𝐷) = 0.005 that the next person had the 

disease. Now, I know that the person has 𝑃(𝐷|𝑃) ≈ 0.332 > 𝑃(𝐷) probability of having the disease. 

The occurrence of the event has increased my confidence on the hypothesis (about 66 times). 

For the same reason, if the blood test comes out negative, I expect that 𝑃(𝐷|𝑃𝑐) < 𝑃(𝐷). Let’s 

confirm this through computations: 

𝑃(𝐷|𝑃𝑐) =
𝑃(𝐷𝑃𝑐)

𝑃(𝑃𝑐)
=
𝑃(𝑃𝑐|𝐷) ⋅ 𝑃(𝐷)

1 − 𝑃(𝑃)

=
(1 − 𝑃(𝑃|𝐷)) ⋅ 𝑃(𝐷)

1 − 𝑃(𝑃)

=
0.01 ⋅ 0.005

1 − (0.99 ⋅ 0.005 + 0.01 ⋅ 0.995)

= 5.07 ⋅ 10−5

 

Meaning that, if the test finds you negative, you have one chance in 20,000 of actually being ill (the 

probability a posteriori is 100 times smaller). 

 

 

Exercise 

I ask my neighbor to water a plant while I am away. I believe that: 

- If he doesn’t water it, the plant has an 80% probability to die 

- If he waters it, the plant has a 15% probability to die.  

I also believe that the neighbor will remember to water the plant with 90% probability.  

1) What is the probability that I will find the plant alive on my return? 

2) Given that I return to find the plant dead, what is the probability that the neighbor forgot to 

water it? 

 

Solution 
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[Before solving the exercise, we observe that this exercise introduces surreptitiously the concept of 

probability as subjective measure on the confidence that an event will occur, which is very different 

from the concept of “relative frequency”. The first definition is somewhat more interesting for econ-

omists and philosophers, whereas the second one is interesting for scientists and engineers. We don’t 

really care how the probabilities are defined right now, since we are interested in how to manipulate 

them. The good news is that the rules we devised for this hold regardless of the interpretation]. 

 

Let us define the two events of interest: D={the plant dies}, W={the plant is watered}. We have: 

𝑃(𝐷|𝑊) = 0.15,    𝑃(𝐷|𝑊𝑐) = 0.8,    𝑃(𝑊) = 0.9 

1) We need to compute 𝑃(𝐷𝑐): 

𝑃(𝐷𝑐) = 1 − 𝑃(𝐷)

= 1 − [𝑃(𝐷|𝑊) ⋅ 𝑃(𝑊) + 𝑃(𝐷|𝑊𝑐) ⋅ 𝑃(𝑊𝑐)]

= 1 − [𝑃(𝐷|𝑊) ⋅ 𝑃(𝑊) + 𝑃(𝐷|𝑊𝑐) ⋅ (1 − 𝑃(𝑊))]

= 1 − [0.15 ⋅ 0.9 + 0.8 ⋅ 0.1]
= 0.785

 

2) We are now looking at 𝑃(𝑊𝑐|𝐷), which we can find using Bayes’ formula. 

𝑃(𝑊𝑐|𝐷) =
𝑃(𝑊𝑐𝐷)

𝑃(𝐷)
=
𝑃(𝐷|𝑊𝑐) ⋅ 𝑃(𝑊𝑐)

𝑃(𝐷)

=
𝑃(𝐷|𝑊𝑐) ⋅ [1 − 𝑃(𝑊)]

𝑃(𝐷|𝑊) ⋅ 𝑃(𝑊) + 𝑃(𝐷|𝑊𝑐) ⋅ [1 − 𝑃(𝑊)]
≅ 0.372

 

The a priori probability that the neighbor will forget to water the plant is 𝑃(𝑊𝑐) = 0.1. An event 

occurs, i.e. the plant dies, and the a posteriori probability that the neighbor forgot to water the plant 

can be reassessed. That probability is 𝑃(𝑊𝑐|𝐷) = 0.372, which is higher than the a priori one. 

 

2.4.2 Independent events 

As we have seen, in general a conditional probability 𝑃(𝐸|𝐹) is different from the unconditional 

probability 𝑃(𝐸). Knowing something about F changes my knowledge about E. In some cases, event 

F could be irrelevant, meaning that the occurrence of F does not give any information about E. In 

this case we say that E and F are independent events. 

The formal definition of independent events is the following: 

Two events E and F are independent if and only if: 

𝑃(𝐸𝐹) = 𝑃(𝐸) ⋅ 𝑃(𝐹) 

This definition is better understood if we write it down in terms of conditional probabilities: 
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𝑃(𝐸|𝐹) =
𝑃(𝐸𝐹)

𝑃(𝐹)
=
𝑃(𝐸) ⋅ 𝑃(𝐹)

𝑃(𝐹)
= 𝑃(𝐸) 

Where the last passage is due to independence. This formula says that conditioning E to F yields no 

information.  

Some useful properties, that have to be kept in mind: 

a) If E is independent of F, it is independent of 𝑭𝒄 as well. This is fairly obvious: if knowing 

that F has occurred does not change things about E, even knowing that it has not occurred 

cannot. 

b) Independence is symmetric: if E is independent of F, then F is independent of E. This one is 

obvious too, and can be proved by changing E and F in the above formula. 

c) If E is independent of both F and G, it is not necessarily independent of FG. Independence 

between more than two events is tricky.  

 

In practice, independence is seldom something that you have to verify yourself: rateher, it is implied 

by some a priori knowledge of your system. For more than a bunch of events, it is almost impossible 

to verify, in any case. 

A very common case of independent events is the following. 

2.4.3 Repeated trials 

A typical case of independent events is given when an experiment consists in repeating n times the 

same subexperiment under “independent conditions” (e.g., the repeated flip of a coin). Independent 

conditions mean that the j-th trial is not influenced by the results of the previous trials. For instance, 

you can reasonably assume that this happens when you flip a coin several times.  

 

Exercise 

A coin is flipped five times, in independent conditions. Compute the probability that: 

a) The first three flips yield the same outcome 

b) Either the first three, or the last three flips, yield the same outcome 

c) There are at least two heads in the first three flips, and two tails in the last three flips. 

 

Solution 

Each flip is an independent subexperiment. Thus, I can multiply the probabilities of events related to 

different flips. I can solve a) and b) using either this trick or the basic principle of counting. Let us 

use independence.  
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a) By independence: 

- You flip the coin once, and obtain an outcome with probability 1. 

- The second flip is equal to the first with probability ½  

- The third flip is equal to the first with probability ½. 

The three events are independent, hence the resulting probability is the product of the three above, 

which is exactly ¼. 

Taking into account that this is an UPM experiment, the possible combinations of three results 

are 𝑁 = 25. Of these, eight are those that interest me, i.e. 𝐸 = {(𝐻𝐻𝐻𝑥𝑥), (𝑇𝑇𝑇𝑥𝑥)}. Therefore, 

the requested result is 𝑃 = 8 32⁄ = 1 4⁄ . 

Note that the fact that this is a UPM is due to the fact that the coin is fair. If the coin is unfair 

(say, biased towards heads with 60% probability), then you cannot use UPM, but you can still 

use independence. 

b) By independence, you have to compute the probability of event 𝐹 ∪ 𝐿 , where 𝐹 =

{3h/tatthebeginning}, and 𝐿 = {3h/tattheend}. It is 𝐹 ∩ 𝐿 = {5h/t}. Thus 𝑃(𝐹) = 1 ⋅ 1 2⁄ ⋅

1 2⁄ = 𝑃(𝐿), and 𝑃(𝐹𝐿) = 1 ⋅ (1 2⁄ )4. Hence: 

𝑃(𝐹 ∪ 𝐿) = 𝑃(𝐹) + 𝑃(𝐿) − 𝑃(𝐹𝐿)

= 1 4⁄ + 1 4⁄ − 1 16⁄

=
7

16

 

Using the UPM, we get to the same result through a longer route. The combinations of 5 outcomes 

are 𝑁 = 25. We are interested in the cardinality of the event 𝐸 = 𝐸𝐻𝑠 ∪ 𝐸𝐻𝑒 ∪ 𝐸𝑇𝑠 ∪ 𝐸𝑇𝑒, with 

(H=heads, s=start, T=tails, e=end): 

𝐸𝐻𝑠 = {(𝐻𝐻𝐻𝑥𝑥), 𝑥 ∈ {𝐻, 𝑇}}, and the same goes for the other three. 

Every subset has a cardinality of four elements, but subsets are not disjoint 

- 𝐸𝐻𝑠 ∩ 𝐸𝐻𝑒 = {(𝐻𝐻𝐻𝐻𝐻)}  

- 𝐸𝑇𝑠 ∩ 𝐸𝑇𝑒 = {(𝑇𝑇𝑇𝑇𝑇)}  

- 𝐸𝐻𝑠 ∩ 𝐸𝑇𝑒 = 𝐸𝑇𝑠 ∩ 𝐸𝐻𝑒 = 𝐸𝐻𝑠 ∩ 𝐸𝑇𝑠 = 𝐸𝐻𝑠 ∩ 𝐸𝑇𝑒 = ∅  

Hence,  

|𝐸| = |𝐸𝐻𝑠 ∪ 𝐸𝐻𝑒 ∪ 𝐸𝑇𝑠 ∪ 𝐸𝑇𝑒|

= |𝐸𝐻𝑠| + |𝐸𝐻𝑒| + |𝐸𝑇𝑠| + |𝐸𝑇𝑒| − |𝐸𝐻𝑠 ∩ 𝐸𝐻𝑒| − |𝐸𝑇𝑠 ∩ 𝐸𝑇𝑒|
= 4 ⋅ 4 − 2 = 14

 

The result is 𝑃 = 14 32⁄ = 7 16⁄ . 

c) Here, it is preferable to use the UPM model. Of 32 outcomes, the following are in the event I want 

to observe: 

𝑥𝐻𝐻𝑇𝑇,𝐻𝑥𝐻𝑇𝑇,𝐻𝐻𝑥𝑇𝑇,𝐻𝐻𝑇𝑥𝑇,𝐻𝐻𝑇𝑇𝑥 
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Let us count how many outcomes we have overall, without including duplicates: 

- For the first set, x can be H or T 

- For the second one, only T (otherwise I am counting the same outcome twice) 

- For the 3rd, only T 

- For the 4th and 5th only H 

We therefore have 6 outcomes in our event. The result is 𝑃 = 6 32⁄ = 3 16⁄ . 

 

 

Exercise 

Mr. Rossi has a bunch of n keys, 𝑛 > 1, one of which opens his door. What is the probability that i) 

choosing a key at random, and ii) discarding it if it is the wrong one, 

a) He opens the door exactly on the kth attempt, 1 ≤ 𝑘 ≤ 𝑛 

b) He opens the door within k attempts 

Assume now that Mr. Rossi does not discard the wrong keys after a failed attempt.  

c) Answer the previous questions again 

 

Solution 

There are at least two ways to answer question a). The first one is based on the principle of counting, 

and the second one is based on conditional probability. To introduce the second one, it is convenient 

to solve point b) first.  

a1) the sample space is the set of all permutations of k elements extracted from a set of n. Note 

the difference between permutations and subsets, which I have already pointed out (in permutations, 

order matters. In subsets, it does not).  

The permutations of k elements are: 

𝑁 = 𝑆𝑘,𝑛 = 𝑛 ⋅ (𝑛 − 1) ⋅. . .⋅ (𝑛 − 𝑘 + 1) = 𝑛! (𝑛 − 𝑘)!⁄  

We are in the case of equally likely results (every sequence has the same probability of every other, 

given that I am choosing the keys at random). I have to compute the cardinality of the event 

𝐸𝑘 = {𝑘
𝑡ℎkeyistherightone} 

Event 𝐸𝑘 includes all the sequences of k-1 elements (the first k-1 wrong keys) taken from a set of  n-

1 keys (every key except the right one). Then: 

|𝐸𝑘| = 𝑆𝑘−1,𝑛−1 = (𝑛 − 1)! (𝑛 − 𝑘)!⁄  

Then you obtain: 

𝑃(𝐸𝑘) =
|𝐸𝑘|

𝑁
=
𝑆𝑘−1,𝑛−1
𝑆𝑘,𝑛

=
(𝑛 − 1)!

(𝑛 − 𝑘)!
⋅
(𝑛 − 𝑘)!

𝑛!
=
1

𝑛
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And the result does not depend on k.  

This is the same case we have already seen in a previous exercise. Question a) is equivalent to asking: 

“what is the probability that, sorting n keys at random, one particular key ends up in the kth position”? 

The answer is 1 𝑛⁄ , and does not depend on k (there is nothing special about the kth position). 

 

b) The probability of opening the door within k attempts is the probability of event 𝐹𝑘 = ⋃ 𝐸𝑖
𝑘
𝑖=1 . The 

events𝐸𝑖, 1 ≤ 𝑖 ≤ 𝑛 are mutually exclusive. Therefore, the probability I am looking for is: 

𝑃(𝐹𝑘) = 𝑃(⋃𝐸𝑖

𝑘

𝑖=1

) =∑𝑃(𝐸𝑖)

𝑘

𝑖=1

= 𝑘 ⋅
1

𝑛
=
𝑘

𝑛
 

The result is confirmed by the intuition: as k grows, the probability increases linearly, until it becomes 

certainty at the nth attempt. 

 

a2) Let us exploit conditional probabilities and the theorem of total probability.  

The probability of opening the door on the 1st attempt is 𝑃(𝐸1) = 1 𝑛⁄ . 

For the 2nd attempt, I can use total probability: 

𝑃(𝐸2) = 𝑃(𝐸2|𝐸1) ⋅ 𝑃(𝐸1) + 𝑃(𝐸2|𝐸1
𝑐) ⋅ 𝑃(𝐸1

𝑐)

= 0 +
1

𝑛 − 1
⋅
𝑛 − 1

𝑛

=
1

𝑛

 

In fact, 𝑃(𝐸2|𝐸1) = 0 since 𝐸2𝐸1 is the null event. Furthermore, 𝑃(𝐸2|𝐸1
𝑐) = 1 (𝑛 − 1)⁄ , since the 

conditioning event implies that one key is discarded, hence the choice is reduced by one. 

For a generic kth attempt I have: 

𝑃(𝐸𝑘) = 𝑃(𝐸𝑘|𝐹𝑘−1) ⋅ 𝑃(𝐹𝑘−1) + 𝑃(𝐸𝑘|𝐹𝑘−1
𝑐) ⋅ 𝑃(𝐹𝑘−1

𝑐)

= 0 +
1

𝑛 − (𝑘 − 1)
⋅ [1 −

𝑘 − 1

𝑛
]

=
1

𝑛

 

The first addendum is always null. For the second one, we apply the same reasoning: the conditional 

probability is to pick the right key from the bunch having discarded k-1 wrong keys. The probability 

of using the wrong key k-1 times is the complement of the one that has been computed at point b).  

 

c) If Mr. Rossi is not discarding the wrong keys, he is executing k repeated trials in independent 

conditions, in each one of which the probability of getting the right key out of the bunch is 𝑝 = 1 𝑛⁄ . 

Therefore, the probability that the door opens on the kth attempt is: 
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𝑃(𝐸𝑘′) = (1 − 𝑝)𝑘−1 ⋅ 𝑝 = (
𝑛 − 1

𝑛
)
𝑘−1

⋅
1

𝑛
=
(𝑛 − 1)𝑘−1

𝑛𝑘
 

Note that lim
𝑘→∞

𝑃(𝐸𝑘) = 0. This should not surprise us, since it is perfectly logical that, as k grows 

larger, the probability that Mr. Rossi gets the wrong key k-1 consecutive times goes to zero. 

The event “Mr. Rossi opens the door within k attempts” is 𝐹𝑘′ = ⋃ 𝐸𝑖
𝑘
𝑖=1 . Moreover, events 𝐸𝑖 are 

mutually disjoint. Therefore: 

𝑃(𝐹𝑘′) =∑((1 − 𝑝)𝑖−1 ⋅ 𝑝)

𝑘

𝑖=1

=
1

𝑛
⋅∑(1 −

1

𝑛
)
𝑖−1𝑘

𝑖=1

 

The above one is a geometric series, that has a closed form. In order to save computations, it is easier 

to compute the probability of the complementary event, i.e. the event that Mr. Rossi is unable to 

open the door for k consecutive attempts. This one is clearly (by independence and repeated trials): 

𝑃(𝐹𝑘′
𝑐) = (

𝑛 − 1

𝑛
)
𝑘

= (1 − 𝑝)𝑘 

Hence we obtain: 

𝑃(𝐹𝑘′) = 1 − 𝑃(𝐹𝑘′
𝑐) = 1 − (

𝑛 − 1

𝑛
)
𝑘

 

This has an intuitive explanation. As k grows (i.e. you try again and again), the probability of opening 

the door tends to 1 asymptotically.  However, for any finite number of attempts, there is still a residual 

probability that you get the wrong key every time. 

 

2.4.4 Parallel systems 

A system is said to be parallel when it is composed of n subsystems, and it works if at least one of 

the subsystem is working. It is often the case that the subsystems can be considered to be inde-

pendent. In this case computing the probability that the system works is often simple enough. 

1

2

n

A B

 

The same model can be explained in terms of switches. In the above figure, subsystems are power 

switches, and current flows between A and B is at least one of the switches is closed (which is the 

same as saying that the system works if at least one subsystem is working). 
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Assume that every switch is closed with probability 𝒑𝒊, 1 ≤ 𝑖 ≤ 𝑛, and that they are independent. 

The probability that the current flows is computed as follows: 

Define 𝐴𝑖 the event “switch i is closed”. If  𝑷(𝑨𝒊) = 𝒑𝒊, then the probability of 𝐴𝑖
𝑐 is (1 − 𝑝𝑖). 

𝑃{systemworks} = 1 − 𝑃{currentdoesnotflow}

= 1 − 𝑃{allswitchesareopen}

= 1 − 𝑃(𝐴1
𝑐𝐴2

𝑐. . . 𝐴𝑛
𝑐)

= 1 − ∏ 𝑃(𝐴𝑖
𝑐)𝑛

𝑖=1

= 1 −∏ (1 − 𝑝𝑖)
𝑛
𝑖=1

 

Here we exploit the trick of computing the probability of the complementary event. This is often 

important in many cases, so try to memorize it. 

 

Exercise 

Call 𝑝𝑖 the probability that the i-th switch is closed. Compute the probability that current flows from 

A to B, assuming that switches are independent, in the two cases below. 

1 2
5

3 4

A B

  

1 4

52

A B
3

 

Solution 

Call 𝐸𝑖 the event “the i-th switch is closed”.  

Consider the system on the left. 

Call 𝐸sup and 𝐸inf the events for which the upper and lower branches are traversed by current. The 

event “current flows through” is the intersection of two independent events: 

- The parallel system on the left allows current to flow through 

- Switch 5 is closed 

The parallel system on the left allows current through with the following probability: 

𝑝𝑝𝑎𝑟 = 1 − (1 − 𝑝sup)(1 − 𝑝inf)

= 1 − (1 − 𝑝1 ⋅ 𝑝2)(1 − 𝑝3 ⋅ 𝑝4)
 

Where the last passage is due to the fact that the switches (and, specifically, those on the same line) 

are independent. Therefore the probability is: 

𝑝𝑝𝑎𝑟 ⋅ 𝑝5 = [1 − (1 − 𝑝1 ⋅ 𝑝2)(1 − 𝑝3 ⋅ 𝑝4)] ⋅ 𝑝5 

 

By independence. If 

A and B are inde-

pendent, so are Ac e 

Bc 
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Consider now the system on the right. 

Call 𝐶 the event “current flows”. The exercise would be easy, were it not for switch 3. However, we 

can make two alternative and complementary hypotheses regarding switch 3, which is either 

closed or open. Then, we use the Theorem of Total Probability, which ensures us that: 

𝑃(𝐶) = 𝑃(𝐶|𝐸3) ⋅ 𝑃(𝐸3) + 𝑃(𝐶|𝐸3
𝑐) ⋅ 𝑃(𝐸3

𝑐). 

Computing the conditional probabilities in the two cases is a lot easier: 

1

2

A B4

5
 

1 4

2 5

A B

 

𝑃(𝐶|𝐸3) can be computed by observing that the two parallel subsystems (on the left and on the right 

respectively) are independent by hypothesis. In fact, if all switches are independent, every combina-

tion of switches is independent of every other. Therefore, their probabilities can be computed as: 

- left parallel (1-2):  1 − (1 − 𝑝1) ⋅ (1 − 𝑝2) 

- right parallel (4-5): 1 − (1 − 𝑝4) ⋅ (1 − 𝑝5) 

Hence: 𝑃(𝐶|𝐸3) = [1 − (1 − 𝑝1) ⋅ (1 − 𝑝2)] ⋅ [1 − (1 − 𝑝4) ⋅ (1 − 𝑝5)] 

𝑃(𝐶|𝐸3
𝑐) can instead be computed directly, by observing that the probabilities of switches lying on 

the same line can be multiplied, since events are independent.  

𝑃(𝐶|𝐸3
𝑐) = 1 − (1 − 𝑝1𝑝4) ⋅ (1 − 𝑝2𝑝5) 

Putting it all together, we obtain: 

𝑃(𝐶) = 𝑃(𝐶|𝐸3) ⋅ 𝑃(𝐸3) + 𝑃(𝐶|𝐸3
𝑐) ⋅ 𝑃(𝐸3

𝑐)

= [1 − (1 − 𝑝1) ⋅ (1 − 𝑝2)] ⋅ [1 − (1 − 𝑝4) ⋅ (1 − 𝑝5)] ⋅ 𝑝3 +

+[1 − (1 − 𝑝1𝑝4) ⋅ (1 − 𝑝2𝑝5)] ⋅ (1 − 𝑝3)
 

 

 

Exercise 

We collect k coupons, each one of which can be independently of n different types, with probability 

𝑝𝑗 (such that, obviously, ∑ 𝑝𝑗
𝑛
𝑖=1 = 1). 

What is the probability that a collection of k coupons contains at least one type-i or type-j coupon?  

 

When 3 is open 

When 3 is closed 
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Solution 

Define 𝐸𝑥={a coupon is type-x}. The probability that a coupon is of type i or j is 𝑃(𝐸𝑖 ∪ 𝐸𝑗), and it is 

equal to 𝑃(𝐸𝑖) + 𝑃(𝐸𝑗) = 𝑝𝑖 + 𝑝𝑗  (the two events are mutually exclusive). Therefore, 𝑃((𝐸𝑖 ∪

𝐸𝑗)
𝑐
) = 1 − (𝑝𝑖 + 𝑝𝑗) is the probability that a coupon is neither type-i nor type-j. 

The probability that of k coupons there aren’t any of type i or j (which is the complementary event 

of the one we are looking for) is therefore 𝑃𝑐 = [1 − (𝑝𝑖 + 𝑝𝑗)]
𝑘
. 

Therefore, the probability that I am looking for is 𝑃 = 1 − 𝑃𝑐 = 1 − [1 − (𝑝𝑖 + 𝑝𝑗)]
𝑘
. 
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3 Random variables 

There are several ways to define random variables. The one I prefer is as real-valued functions. 

Given a random experiment whose sample space is 𝑆, we say that 𝑋 is a random variable on S if 

it is a real-valued function 𝑋: 𝑆 → ℝ. Random variables are denoted with uppercase letters.  Func-

tion X has nothing random in itself. It is instead a perfectly deterministic one. It is the outcome of 

the experiment that is random.  

 

Example  

Suppose that you have a coin flip, hence 𝑆 = {𝐻, 𝑇}, and that you bet 20 cents on “heads”. You can 

define a random variable X as follow:  

𝑋(𝐻) = +20, 𝑋(𝑇) = −20 

That random variable defines the net gain of your bet, given the outcome. 

.

.

.

.

H

T

+20

-20

S

X

 

In this case I can (and henceforth will) take a shortcut and mention “the probability that X is equal 

to +20”, 𝑃{𝑋 = +20}, meaning in fact the probability that “the event occurs whose image through 

X is the real value +20”, in this case event “heads”.  

That probability is 𝑃{𝑋 = +20} = 𝑃{𝑋 = −20} = 0.5 

 

 

Example 

Take the random experiment consisting in the throw of two dice. The sample space is: 

𝑆 = {(𝑑1, 𝑑2)|1 ≤ 𝑑1, 𝑑2 ≤ 6} 

I can define the following random variables: 

- 𝑋, sum of the values on each die: 𝑋: 𝑆 → ℝ, 𝑋((𝑑1, 𝑑2)) = 𝑑1 + 𝑑2 

- 𝑌, maximum value on either die: 𝑌: 𝑆 → ℝ, 𝑌((𝑑1, 𝑑2)) = max{𝑑1, 𝑑2} 

𝑋 takes on values: {2,3, . . . ,11,12}, whereas 𝑌 takes on values: {1,2, . . . ,6}. 

In both cases, I can associate a probability to each value using UPM. Let‘s do it for 𝑌: 
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𝑃{𝑌 = 1} = 𝑃{(1,1)} = 1 36⁄  

𝑃{𝑌 = 2} = 𝑃{(2,1), (1,2), (2,2)} = 3 36⁄   

𝑃{𝑌 = 3} = 𝑃{(1,3), (2,3), (3,3), (3,2), (3,1)} = 5 36⁄  

𝑃{𝑌 = 4} = 𝑃{(1,4), (2,4), (3,4), (4,4), (4,3), (4,2), (4,1)} = 7 36⁄  

𝑃{𝑌 = 5} = 𝑃{(1,5), (2,5), (3,5), (4,5), (5,5), (5,4), (5,3), (5,2), (5,1)} = 9 36⁄  

𝑃{𝑌 = 6} = 1 −∑ 𝑃{𝑌 = 𝑖}
5

𝑖=1
= 1 −

1 + 3 + 5 + 7 + 9

36
= 1 −

25

36
=
11

36
 

(The last one could be computed directly, but it’s quicker this way). 

.

.

(1,1) 1

2

S

Y
(1,2)

(2,1)

(2,2)

 

 

 

Example 

We buy two electronic devices, each one of which can be either functioning or defective with some 

probability. The sample space for this random experiment is the set of the following outcomes: 

S={ (f,f), (f,d), (d,f), (d,d) } 

We have a probability for each outcome: 

𝑃({(𝑓, 𝑓)}) = 0.49, 𝑃({(𝑓, 𝑑)}) = 𝑃({(𝑑, 𝑓)}) = 0.21,𝑃({(𝑑, 𝑑)}) = 0.09 

Given a random experiment, the definition of a random variable on that experiment is in the mind of 

the observer, same as the definition of an outcome. 

For instance, I can define the random variable 𝑋 “number of functioning devices” as follows: 

𝑋((𝑓, 𝑓)) = 2, 𝑋((𝑓, 𝑑)) = 1, 𝑋((𝑑, 𝑓)) = 1, 𝑋((𝑑, 𝑑)) = 0. 

Hence I will have: 

𝑃{𝑋 = 2} = 0.49, 𝑃{𝑋 = 1} = 0.42, 𝑃{𝑋 = 0} = 0.09. 

I can have something else in mind, and define a different random variable 𝑌, that is equal to 1 if the 

number of functioning devices is even, and 0 if it is odd. In this case: 

𝑃{𝑌 = 1} = 0.58, 𝑃{𝑌 = 0} = 0.42, 

Since the event whose image is 1 occurs with probability 0.58. 

 

The event whose im-

age through Y is 2 
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The values of a random variable 𝑋 are the subset of real numbers into which function 𝑋 maps the 

sample space.  

A discrete RV takes on a discrete number of real values, as in all the examples that we have just 

seen. Take care not to make a common mistake: the fact that a random variable is discrete does not 

have anything to do with its values being integer (as it was, by chance, in the previous examples). 

You just need to take “half the maximum of the two dice” to obtain a different random variable on 

the same experiment, which is still discrete, but whose values are real and not integer.  

For a continuous RV, the set of possible values is an interval of real numbers. The typical case of 

a continuous RV is the lifetime of a device, and in general things that are connected with time or 

frequency.  

 

Example 

A random experiment consists in measuring the lifetime of a device. Its sample space is an interval 

𝑆 = [0,∞), and each outcome is a possible lifetime. We define the continuous RV 𝑋: 𝑆 → ℝ, such 

that 𝑋(𝑡) = 𝑡.  

If the example looks too trivial, take this one: measure the random lifetime of two devices. The sam-

ple space is 𝑆 = [0,∞) × [0,∞) = {(𝑡1, 𝑡2)|𝑡1, 𝑡2 ≥ 0}, and define a continuous RV 𝑋: 𝑆 → ℝ, such 

that 𝑋((𝑡1, 𝑡2)) = min(𝑡1, 𝑡2). 

 

3.1 Cumulative Distribution Function of a random variable 

A random variable 𝑋 (either discrete or continuous) is completely characterized by its Cumulative 

Distribution Function (CDF), or distribution for short. The latter is defined as follows: 

𝐹(𝜔) = 𝑃{𝑋 ≤ 𝜔} 

Omega is a value, and I am writing it in lowercase, whereas X is a random variable (uppercase). 

Notice the weak inequality (which is mandatory in the definition). 
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For instance, for RV 𝑋 “number of functioning de-

vices”, we have: 

𝐹(0) = 0.09, 𝐹(1) = 0.51, 𝐹(2) = 1. 

For a discrete RV, the CDF is a staircase function. 

A CDF (any CDF) is always weakly monotonic, 

and it has values between 0 and 1 on the y axis 

(which reports probabilities, in fact). 

 
1 20

1

0.51

0.09

w

F(w)

 

Moreover, it is quite obvious that lim
𝜔→−∞

𝐹(𝜔) = 0, lim
𝜔→∞

𝐹(𝜔) = 1. This holds for any RV. 

Note that staircase CDFs are right continuous, meaning that the right values are those that are asso-

ciated to a step. For instance, F(1)=0.51 (this is implied by the weak inequality in the definition, and 

that’s why it is important to keep it in mind). 

 

Exercise 

Consider an RV 𝑋 whose𝐹(𝜔) CDF is the following: 

𝐹(𝜔) = {
0 𝜔 ≤ 0

1 − 𝑒−𝜔
2

𝜔 > 0
 

 

Compute 𝑃{𝑋 > 1}. 

Solution:  

𝑃{𝑋 > 1} = 1 − 𝑃{𝑋 ≤ 1} = 1 − 𝐹(1) = 1 − (1 − 𝑒−1) = 1 𝑒⁄ . 

 

 

0

0,2

0,4

0,6

0,8

1

1,2

0 0,5 1 1,5 2 2,5 3

F

F
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Once you have the CDF of a RV, you can answer any question related to the probability of that 

RV. For instance, in the above example, I can ask myself what is the following probability: 

𝑃{1 < 𝑋 ≤ 2}. The answer can be found as follows: 

𝑃{𝑋 ≤ 2} = 𝑃{𝑋 ≤ 1} + 𝑃{1 < 𝑋 ≤ 2} 

I can sum the probabilities on the r.h.s. since the two events are mutually exclusive. From the defi-

nition of CDF; I obtain the following: 

𝑃{1 < 𝑋 ≤ 2} = 𝐹(2) − 𝐹(1)

= (1 − 𝑒−4) − (1 − 𝑒−1)

= 1 𝑒⁄ − 1 𝑒4⁄

 

3.2 Probability Mass Function of discrete RVs 

For discrete RVs (and for these only), a Probability Mass Function (PMF) can be defined. The 

definition is: 

𝑝(𝑎) = 𝑃{𝑋 = 𝑎} 

Note that we use lowercase to denote a PMF, and uppercase to denote a CDF. 

For a discrete RV, 𝑝(𝑎) can be non-null only for a numerable quantity of values. This is  because 

∑ 𝑝(𝑎) = 1+∞
−∞ , an equality which is called normalization condition.  

Furthermore, it is quite straightforward to observe that 𝐹(𝑎) = ∑ 𝑝(𝑥)𝑥≤𝑎 , hence we can find the 

CDF from the PMF. We can also do the reverse, since 𝑝(𝑎) = 𝐹(𝑎) − 𝐹(𝑎−). Thus, knowing the 

PMF or the CDF of a discrete RV is pretty much the same thing.  

 

Example  

A discrete RV has 3 values: 1,2,3. We know 𝑝(1) = 1 2⁄ , 𝑝(2) = 1 3⁄ . Draw a graph of the PMF 

and CDF. 

It is fairly obvious that 𝑝(3) = 1 − (𝑝(1) + 𝑝(2)) = 1 6⁄ . The PMF has three spikes corresponding 

to the three values, each one as large as the related probability. The CDF is a staircase, with each step 

as large as the corresponding spike.  

 

 

As another example, we have already computed analytically the PMF for the RV 𝑌={maximum of 

two dice}. From the latter, it is straightforward to compute the CDF for that RV. 
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3.3 Probability Density Function for continuous RVs 

For continuous RVs it makes no sense to define a PMF. It is in fact impossible that a RV takes on 

exactly one value (with infinite precision) in a continuous space. The best that I can do in this case is 

to explore whether a RV is more likely to take on a value in a certain interval than in another.   

For continuous RVs, we define the Probability Density Function (PDF) 𝒇(𝒙) (mind the lowercase), 

which is a non negative function with the following property. 𝒇(𝒙) is a PDF if, given any set B of 

real numbers,it is: 

𝑃{𝑋 ∈ 𝐵} = ∫ 𝑓(𝑥)𝑑𝑥
𝐵

 

From the above definition we quickly derive that: 

𝑃{𝑋 ∈ (−∞;+∞)} = ∫ 𝑓(𝑥)𝑑𝑥
+∞

−∞
= 1, 

Which is again called normalization condition.  

And, if B is an interval [𝑎, 𝑏], we obtain: 

𝑃{𝑎 ≤ 𝑋 ≤ 𝑏} = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎). 

Note that, with continuous RVs, it does not really matter whether inequalities are strict or weak.  From 

the above, we get a more intuitive “physical” explanation of the concept of PDF: 

𝑃 {𝑋 ∈ (𝑎 −
휀

2
; 𝑎 +

휀

2
)} = ∫ 𝑓(𝑥)𝑑𝑥

𝑎+
𝜀
2

𝑎−
𝜀
2

≈ 휀 ⋅ 𝑓(𝑎) 

This means that 𝑓(𝑎) measures the probability that the RV takes on a value around a. If we wished 

to be more precise, and look for the probability that the RV takes on a value which is exactly a, we 

would get: 

𝑃{𝑋 = 𝑎} = 𝑃{𝑎 ≤ 𝑋 ≤ 𝑎} = ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑎
= 𝐹(𝑎) − 𝐹(𝑎) = 0, 

Which is coherent with our earlier intuition.  

Finally, we get the most important property: 

𝐹(𝑎) = 𝑃{𝑋 ≤ 𝑎} = 𝑃{−∞ ≤ 𝑋 ≤ 𝑎} = ∫ 𝑓(𝑥)𝑑𝑥
𝑎

−∞
, 

Which can be written in a derivative form, differentiating with respect to a: 

𝑓(𝑎) =
𝜕

𝜕𝑎
𝐹(𝑎) 

For continuous RVs, the PDF is the derivative of the CDF. Obviously enough, I can differentiate the 

CDF only where it is differentiable. The CDF always exists, whereas the PDF exists only where 

the CDF is differentiable.  
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This is not a practical concern, since in all the cases we will deal with the CDF will be differentiable 

everywhere.  

 

Knowing the PDF or the CDF of a continuous RV gives you the same information (except for the 

above caveat), in much the same way as knowing the PMF or the CDF gives you the same information 

for a discrete RV. 

 

Example 

Consider the following PDF of RV X: 

 

𝑓(𝑥) = {𝐶 ⋅
(4𝑥 − 2𝑥2) 0 ≤ 𝑥 ≤ 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where C is a real-valued constant. 

0 2

2C

1 x

f(x)

Compute C and find probability 𝑃{𝑋 > 1}. 

 

Solution 

To compute C we just need to impose the normalization condition). The integral is the area of the 

figure bounded by the parabola and the x axis. Thus: 

∫ 𝐶 ⋅ (4𝑥 − 2𝑥2)𝑑𝑥
2

0

= 1

𝐶 ⋅ [2𝑥2 −
2

3
⋅ 𝑥3]

0

2

= 1

𝐶 ⋅ [(8 −
16

3
)] = 1

𝐶 =
3

8

 

As for the probability that 𝑃{𝑋 > 1}, obvious symmetry reasons confirm that it is 0.5. The figure is 

symmetric around the vertical line passing through 1, and its area is equal to 1, hence we are asking 

how large half the area is.  

Let us confirm this using computations: 
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𝑃{𝑋 > 1} = 𝑃{1 ≤ 𝑋 ≤ 2} = ∫
3

8
⋅ (4𝑥 − 2𝑥2)𝑑𝑥

2

1

=
3

4
⋅ [𝑥2 −

1

3
⋅ 𝑥3]

1

2

=
3

4
⋅ [(4 −

8

3
) − (1 −

1

3
)]
1

2

=
3

4
⋅ [
4

3
−
2

3
]

=
1

2

 

 

3.3.1 Exercises 

Exercise 

Five male and five female students are ranked according to their test grades. Assume each ranking is 

equally likely, and that there are no ex-aequo positions. Let X be a RV defined as the highest position 

occupied by a female student (meaning that the 1st is higher than the 2nd, etc.). Compute the PMF of 

X. 

 

Solution 

𝑋  is a discrete RV. We need to compute 𝑝(𝑗) = 𝑃{𝑋 = 𝑗} for 1 ≤ 𝑗 ≤ 10. Anyone can see that 

𝑝(𝑗) = 0 when 𝑗 ≥ 7, since it is impossible that no female students classify in the first 6 positions.  

Let us start with 𝑝(1), i.e. the probability that a female gets the best grades.  

The female students that might get the best marks are 5, and for each one of these we have 9! possible 

rankings of the other students. The number of different rankings is 10!. Therefore: 

𝑝(1) = 5 ⋅
9!

10!
=
1

2
 

Which is what the intuition would suggest us, i.e. the fact that – with equally likely outcomes and 

the same number of males and females – there is 50% probability that a female is in the first position. 

Let’s move on and compute 𝑝(2). This is the probability that a male ranks first and a female ranks 

second. Since there are 5 males and 5 females, there are 5 ⋅ 5 = 52 couples (M, F) that can occupy 

the first two positions. For each one of these, we have 8! possible rankings of the other 8 students. 

Therefore: 

𝑝(2) = 5 ⋅ 5 ⋅
8!

10!
=

25

10 ⋅ 9
=
5

18
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We now move on to 𝑝(3). The possible triplets (M, M, F) for the first three positions are 5 ⋅ 4 ⋅ 5. 

For each one of these we have 7! rankings of the other 7 students. Hence: 

𝑝(3) = 5 ⋅ (5 ⋅ 4) ⋅
7!

10!
=
5

36
 

Now we see quite well where we are heading. In order to compute the generic 𝑝(𝑗), I need to count 

the permutations of j-1 males from a set of 5, 𝑆𝑗−1,5 = 5! [5 − (𝑗 − 1)]!⁄ , and multiply it by the num-

ber of females that can occupy the jth position, which is again 5. As a last term, I have to compute the 

possible permutations of the remaining (10 − 𝑗) students, which are (10 − 𝑗)!. In any case, I need to 

divide by 10!. The answer is therefore: 

𝑝(𝑗) = 5 ⋅
5!

[5−(𝑗−1)]!
⋅
(10−𝑗)!

10!
, 

Which holds for 1 ≤ 𝑗 ≤ 6 (i.e., for all the values for which the denominator is defined).  

The values are shown in the table, and are obtained by instantiating the formula: 

j 1 2 3 4 5 6 7-10 

𝑝(𝑗) 1

2
 
5

18
 
5

36
 
5

84
 

5

252
 

1

252
 

0 

 

One can (and should) always test the normalization condition a posteriori: 

∑ 𝑝(𝑗)
10

𝑗=1
= 1 

Luckily enough, the condition holds, which confirms that I have done the computations correctly. 

 

 

Exercise 

Let 𝑋 be the difference between the number of heads and tails obtained when you flip a coin n times 

in independent conditions.  

1) What are the values for 𝑋? 

2) Compute the PMF of 𝑋 when n=3 

 

Solution 

Point 1:  

- with n=1 the values that 𝑋 can take are  +1 (1 heads - 0 tails) and -1 (0 heads - 1 tails) 

- with n=2 the values for 𝑋 are +2 (2 heads – 0 tails), 0, and  -2 

- with n=3 we have +3, +1, -1, -3 
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- with n=4 we have +4, +2, 0, -2, -4 

In general, we have all the values from –n to +n included, at intervals of two, i.e. S={−𝑛 + 2𝑗, 0 ≤

𝑗 ≤ 𝑛}. 

Point 2: 

If the coin if fair, the values with the same modulus (whichever their sign) must have the same 

probability. Therefore, we can limit ourselves to those with positive sign. Value +3 is obtained with 

3 heads on 3 flips. Each heads has a probability of ½, and flips are independent (hence their proba-

bilities can be multiplied). Thus: 𝑝(+3) = 𝑝(−3) = (1 2⁄ )3 = 1 8⁄ .  

In order to compute 𝑝(+1) = 𝑝(−1) we can follow two methods: 

- the quick one, that relies on symmetry and says that 𝑝(+3) + 𝑝(+1) = 1 2⁄ , hence 𝑝(+1) =

3 8⁄ . 

- The slightly longer one, counting the number of favorable outcomes. These are: 

{(𝐻𝐻𝑇), (𝐻𝑇𝐻), (𝑇𝐻𝐻)}. These are 3, on 8 possibilities, hence the same result is obtained. 

 

 

Exercise 

A radio uses 5 radio tubes. The lifetime of a radio tube is a continuous RV whose PDF is: 

𝑓(𝑥) = {
0 𝑥 ≤ 100
100

𝑥2
𝑥 > 100

 

Compute the probability that exactly 2 tubes in 5 should be replaced within 150 hours of operation. 

Assume that the lifetimes of the tubes are independent. 

 

Solution 

It pays to be skeptical, hence we do a preliminary check that the above PDF really is a PDF. We do 

that by testing the normalization condition:  

𝑃{𝑋 ∈ (−∞;+∞)} = 100 ⋅ ∫
1

𝑥2
𝑑𝑥

+∞

100

= 100 ⋅ [−
1

𝑥
]
100

+∞

= 0 +
100

100
= 1 

Now, the probability that one tube breaks within the first 150 hours is: 

𝑃{𝑋 ≤ 150} = 𝐹(150) = ∫ 𝑓(𝑥)𝑑𝑥
150

−∞

= 100 ⋅ [−
1

𝑥
]
100

150

=
1

3
= 𝑝 

The event of interest is “2 tubes on 5” are to be replaced, meaning that the other 3 actually work. 

Focus on two particular tubes (say, the 1st and the 2nd). The probability that these fail within 150 hours 

and the other three keep working is: 
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𝑝2 ⋅ (1 − 𝑝)3 

There are (
5
2
) ways to take 2 elements from a set of 5. This means that there are (

5
2
) outcomes 

(𝑅1𝑅2𝑅3𝑅4𝑅5), having two faulty tubes, each one of which has the above probability. We can sum 

all these probabilities, since these outcomes are mutually exclusive. By doing this we obtain: 

𝑃 = (
5
2
) 𝑝2 ⋅ (1 − 𝑝)3 = 10 ⋅

1

9
⋅
8

27
=
80

243
≈
1

3
 

 

3.4 Jointly distributed random variables 

We are often interested in the joint distribution of two RV X and  Y. Assume for instance that your 

experiment consists in shooting a target at random. The outcome of your experiment is a couple of 

RVs. Knowing the CDFs of each of the RVs gives you no information about where the points are 

located. You need the joint CDFs of both variables.  

In some cases, you may want to know whether there is any correlation between two RVs. For in-

stance, take the number of cigarettes smoked daily and the age at which lung cancer is diagnosed. 

Again, knowing each CDF alone is not overly informative, because you may want to know whether 

large values of the first are coupled with small values of the second. 

Given two RVs (either discrete or continuous), their Joint Cumulative Distribution Function 

(JCDF) is defined as: 

𝐹(𝑥, 𝑦) = 𝑃{𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦} 

Where the comma denotes a logical and, meaning the intersection of events 𝑋 ≤ 𝑥 and 𝑌 ≤ 𝑦. 

The JCDF tells us everything there is to know about the CDFs of the single RVs. In fact, to compute 

the CDF of variable X, I just need to observe that: 

𝐹𝑋(𝑥) = 𝑃{𝑋 ≤ 𝑥} = 𝑃{𝑋 ≤ 𝑥, 𝑌 ≤ +∞} = 𝐹(𝑥,+∞) 

And the same goes for variable Y. 

𝐹𝑌(𝑦) =. . . = 𝐹(+∞, 𝑦) 

It is absolutely false that the reverse holds. In general (once again, “in general”) you cannot get 

information on the joint distribution from the single distributions.  

3.4.1 Joint PMF for discrete RV 

The JCDF exists for both discrete and continuous pairs of RVs. For discrete RVs, we can also define 

a Joint Probability Mass Function (JPMF), as:  

𝑝(𝑥, 𝑦) = 𝑃{𝑋 = 𝑥, 𝑌 = 𝑦} 
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In this case too we can get the PMFs of the single RVs from the JPMF. In fact: 

𝑃{𝑋 = 𝑥} = 𝑃{⋃ (𝑋 = 𝑥, 𝑌 = 𝑦𝑖)𝑖 }

= ∑ 𝑃{𝑋 = 𝑥, 𝑌 = 𝑦𝑖}𝑖

= ∑ 𝑝(𝑥, 𝑦𝑖)𝑖

 

And similarly, 𝑃{𝑌 = 𝑦} = ∑ 𝑝(𝑥𝑗 , 𝑦)𝑗 . 

Furthermore, the JCDF can be obtained from the JPMF as follows:  

𝐹(𝑥, 𝑦) = 𝑃{𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦} = ∑ ∑ 𝑝(𝑥𝑖, 𝑦𝑗)

𝑦𝑗≤𝑦𝑥𝑖≤𝑥

 

Given a pair of discrete RVs X,Y, whose JPMF is known, the two probabilities 𝑃{𝑋 = 𝑥}  and 

𝑃{𝑌 = 𝑦} are often called marginal probabilities. The reason is that the JPMF is often given in a 

table form (with 𝑋, 𝑌 in row/column), hence the two above probabilities can be computed as row/col-

umn sums, and conveniently written on the margin of the table.  

X
Y

y1 y2 yk

x1

x2

xh

p(x1,y1)

p(x2,y1)

p(xh,y1)

p(x1,y2)

p(x2,y2)

p(xh,y2)

p(x1,yk)

p(x2,yk)

p(xh,yk)

p(y1) p(y2) p(yk)

p(x1)

p(x2)

p(xh)

 

 

3.4.2 Joint PDF for continuous RVs 

For two continuous RVs X and Y, if  for every set 𝐶 of pairs or real numbers (𝑥, 𝑦), we have: 

𝑃{(𝑋, 𝑌) ∈ 𝐶} = ∫ ∫𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

(𝑥,𝑦)∈𝐶

 

Then 𝑓(𝑥, 𝑦) is called Joint Probability Density Function (JPDF) of X and Y.  

More specifically, when C can be separated into two sets of real numbers 𝐶 = {(𝑥, 𝑦)|𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}, 

we can rewrite the above integral as: 

𝑃{(𝑋, 𝑌) ∈ 𝐶} = 𝑃{𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵}

= ∫[∫𝑓(𝑥, 𝑦)𝑑𝑦

𝐵

] 𝑑𝑥

𝐴

 

These are mutually 

disjoint events 
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From the definition of JCDF, we obtain the following: 

𝐹(𝑎, 𝑏) = 𝑃{𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏}

= 𝑃{𝑋 ∈ (−∞, 𝑎], 𝑌 ∈ (−∞, 𝑏]}

= ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑏

−∞

𝑎

−∞

 

Hence, the JCDF can be obtained from the JPDF by integration. Furthermore, if we derive with re-

spect to a and b (assuming that the JCDF is differentiable, which it normally is), we obtain the same 

relationship in the derivative form: 

𝑓(𝑎, 𝑏) =
𝜕2

𝜕𝑎  𝜕𝑏
𝐹(𝑎, 𝑏) 

If the JPDF exists, then also the single PDFs of X and Y exist as well, and they can be computed from 

the JPDF quite easily. 

𝑃{𝑋 ∈ 𝐴} = 𝑃{𝑋 ∈ 𝐴, 𝑌 ∈ (−∞,+∞]}

= ∫[∫ 𝑓(𝑥, 𝑦)𝑑𝑦
+∞

−∞

] 𝑑𝑥

𝐴

 

But we also know that 𝑃{𝑋 ∈ 𝐴} = ∫ 𝑓𝑋(𝑥)𝑑𝑥𝐴
, hence it is : 

𝑓𝑋(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑦
+∞

−∞

 

And the same reasoning holds for the other variable. 

 

Exercise 

The JPDF of two variables X and Y is: 

𝑓(𝑥, 𝑦) = {2𝑒
−𝑥𝑒−2𝑦 𝑥, 𝑦 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Compute: 

a) 𝑃{𝑋 > 1, 𝑌 < 1}, b) 𝑃{𝑋 < 𝑌}, c) 𝑃{𝑋 < 𝑎}  

Solution 

a) the computations are quite straightforward: 
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𝑃{𝑋 > 1, 𝑌 < 1} = ∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑥
+∞

1

] 𝑑𝑦
1

0

= 2∫ 𝑒−2𝑦 [∫ 𝑒−𝑥𝑑𝑥
+∞

1

] 𝑑𝑦
1

0

= 2 ⋅
1

𝑒
⋅ ∫ 𝑒−2𝑦𝑑𝑦

1

0

=
2

𝑒
[−
1

2
𝑒−2𝑦]

0

1

=
1

𝑒
(1 − 𝑒−2)

 

b) Let’s use intuition first. This JPDF decreases with both x and y, but it decreases faster with y. 

Therefore, given two values 𝑥, 𝑦 taken at random, it is more likely that 𝑥 > 𝑦 than the opposite. 

Hence, we expect 𝑃{𝑋 < 𝑌} < 1 2⁄ . Let’s see what the computations tell us: 

𝑃{𝑋 < 𝑌} = ∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑦

0

] 𝑑𝑦
+∞

0

= 2 ⋅ ∫ 𝑒−2𝑦[−𝑒−𝑥]0
𝑦
𝑑𝑦

+∞

0

= 2 ⋅ ∫ 𝑒−2𝑦[1 − 𝑒−𝑦]𝑑𝑦
+∞

0

= 2 ⋅ ∫ (𝑒−2𝑦 − 𝑒−3𝑦)𝑑𝑦
+∞

0

= 2 ⋅ [−
1

2
𝑒−2𝑦 +

1

3
𝑒−3𝑦]

0

+∞

= 2 ⋅ [0 − (−
1

2
+
1

3
)] =

1

3

 

c) again using the same procedure: 

𝑃{𝑋 < 𝑎} = ∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑦
+∞

0

] 𝑑𝑥
𝑎

0

= 2 ⋅ ∫ 𝑒−𝑥 [−
1

2
𝑒−2𝑦]

0

+∞

𝑑𝑥
𝑎

0

= ∫ 𝑒−𝑥𝑑𝑥
𝑎

0

= 1 − 𝑒−𝑎

 

Note that the result is the CDF of X, i.e. 𝐹𝑋(𝑎) (whether the inequality is weak or strong in the defi-

nition does not really matter for continuous RVs, unless the F has discontinuities, which it has not). 
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3.4.3 Joint distributions of n random variables 

The above definitions, which we have introduced for systems of 2 RVs, can be extended to the case 

of n RVs 𝑋1, 𝑋2, . . . , 𝑋𝑛. I can define: 

𝐹(𝑥1, . . . , 𝑥𝑛) = 𝑃{𝑋1 ≤ 𝑥1, . . . , 𝑋𝑛 ≤ 𝑥𝑛} 

And readily obtain the CDF for the single RV 𝑋𝑖 as: 

𝐹𝑋𝑖(𝑥𝑖) = 𝐹(+∞, . . . , +∞, 𝑥𝑖 , +∞, . . . , +∞) 

Etc. etc. 

3.5 Independent random variables 

Two RVs X, Y are independent if and only if: 

𝐹(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦) 

Which means that their JCDFs is the product of the single CDFs. This is equivalent to saying that 

{𝑋 ≤ 𝑥}, {𝑌 ≤ 𝑦} are independent events, for every possible values 𝑥, 𝑦. In fact, consider that: 

𝐹(𝑥, 𝑦) = 𝑃{𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦}

= 𝑃{𝑋 ≤ 𝑥|𝑌 ≤ 𝑦} ⋅ 𝑃{𝑌 ≤ 𝑦}
 

But, if {𝑋 ≤ 𝑥}, {𝑌 ≤ 𝑦} are independent events, then we have:  

𝑃{𝑋 ≤ 𝑥|𝑌 ≤ 𝑦} ⋅ 𝑃{𝑌 ≤ 𝑦}

= 𝑃{𝑋 ≤ 𝑥} ⋅ 𝑃{𝑌 ≤ 𝑦} = 𝐹𝑋(𝑥) ⋅ 𝐹𝑌(𝑦)
 

If two RVs are independent, it follows that: 

- If they are discrete, 𝑝(𝑥, 𝑦) = 𝑝𝑋(𝑥) ⋅ 𝑝𝑌(𝑦). The JPMF is the product of the single PMFs. 

- If they are continuous, 𝑓(𝑥, 𝑦) = 𝑓𝑋(𝑥) ⋅ 𝑓𝑌(𝑦). The JPDF is the product of the single PDFs. 

This obviously generalizes to n RVs, 𝑋1, 𝑋2, . . . , 𝑋𝑛. These are independent if and only if: 

𝐹(𝑥1, . . . , 𝑥𝑛) =∏𝐹𝑋𝑖(𝑥𝑖)

𝑛

𝑖=1

 

 

Exercise 

Let X, Y be two independent continuous RVs, whose PDFs are the same and the following: 

𝑓(𝑥) = {
𝑒−𝑥 𝑥 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Compute the PDF of 𝑍 = 𝑋 𝑌⁄ . 

 

Solution 

Since 𝑋 ∈ [0, +∞) and 𝑌 ∈ [0,+∞), then 𝑍 ∈ [0,+∞). Define a subset of ℝ2 𝐶𝑘 = {(𝑥, 𝑦)| 𝑥 𝑦⁄ ≤

𝑘}. We obtain that 𝐹𝑍(𝑘)=𝑃{(𝑋, 𝑌) ∈ 𝐶𝑘}. This last can be computed as: 
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𝑃{(𝑋, 𝑌) ∈ 𝐶𝑘} = ∫∫𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐶𝑘

 

By the independence hypothesis we observe that: 

𝐹𝑍(𝑘) = ∫ [∫ (𝑒−𝑥) ⋅ (𝑒−𝑦)𝑑𝑥
𝑘𝑦

0

] 𝑑𝑦
+∞

0

= ∫ (𝑒−𝑦) ⋅ [∫ (𝑒−𝑥)𝑑𝑥
𝑘𝑦

0

] 𝑑𝑦
+∞

0

= ∫ (𝑒−𝑦) ⋅ [1 − 𝑒−𝑘𝑦]𝑑𝑦
+∞

0

= ∫ (𝑒−𝑦 − 𝑒−(𝑘+1)𝑦)𝑑𝑦
+∞

0

= [−𝑒−𝑦 +
𝑒−(𝑘+1)𝑦

𝑘 + 1
]
0

+∞

= 1 −
1

𝑘 + 1

 

We have just computed the CDF of the RV of interest (you can check that it verifies all the properties 

of a CDF). Since it is continuous and differentiable  ∀𝑘 ≥ 0, we can compute the PDF that is re-

quired by the exercise: 

𝑓𝑍(𝑘) =
𝜕

𝜕𝑘
𝐹𝑋 𝑌⁄ (𝑘) =

1

(𝑘 + 1)2
 

 

 

Exercise 

Given n RVs 𝑋1, . . . , 𝑋𝑛, iid (independent and identically distributed), whose CDFs are 𝐹(𝑎), com-

pute the CDF of the following two variables: 𝑀 = max{𝑋1, . . . , 𝑋𝑛} and 𝐿 = min{𝑋1, . . . , 𝑋𝑛}. 

 

Solution 

For RV M, we can observe the following 

𝐹𝑀(𝑎) = 𝑃{max{𝑋1, . . . , 𝑋𝑛} ≤ 𝑎}

= 𝑃{𝑋1 ≤ 𝑎, 𝑋2 ≤ 𝑎, . . . , 𝑋𝑛 ≤ 𝑎}

=∏𝑃{𝑋𝑖 ≤ 𝑎}

𝑛

𝑖=1

= [𝐹(𝑎)]𝑛

 

Where the third passage is due to the assumption of independence. 

For the minimum L, the reasoning is similar. It is easier if we go through the longer route:  
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1 − 𝐹𝐿(𝑎) = 𝑃{min{𝑋1, . . . , 𝑋𝑛} > 𝑎}

𝑃{𝑋1 > 𝑎, 𝑋2 > 𝑎, . . . , 𝑋𝑛 > 𝑎}

=∏𝑃{𝑋𝑖 > 𝑎}

𝑛

𝑖=1

= [1 − 𝐹(𝑎)]𝑛

 

From which we immediately obtain:  𝐹𝐿(𝑎) = 1 − [1 − 𝐹(𝑎)]𝑛. 

Let’s take a closer look at those formulas in order to find a physical explanation. Always recall that 

we are in the business of finding explanations, not formulas.  

Assume that 𝐹(𝑎) is the following 

𝐹(𝑎) = {
𝑎 0 ≤ 𝑎 < 1
1 𝑎 ≥ 1
0 𝑎 < 0

 

1

1

a

F(a)

Then it is easy to see the following: 

𝐹𝑀(𝑎) = {
𝑎𝑛 0 ≤ 𝑎 < 1
1 𝑎 ≥ 1

,  𝐹𝐿(𝑎) = {
1 − [1 − 𝑎]𝑛 0 ≤ 𝑎 < 1
1 𝑎 ≥ 1

 

1

1

a

FM(a)

n

1

1

a

FL(a)

n

 

As n grows large, the two distributions tend to a step function, respectively in 1 (maximum) and 0 

(minimum). There is a physical explanation for this. The n variables are independent and uniformly 

distributed. The fact that their PDF is uniform can be observed by deriving 𝐹(𝑎) (you get a constant 

function in [0,1]. If you take one sample at random, it can be anywhere in [0,1]. If you take n samples, 

there is an increasing probability that  

- The highest sample will be near 1 

- The lowest sample will be near 0. 
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You can observe the same phenomenon with discrete RVs as well. If you throw a die, the probability 

that you get a 6 is 1/6. If you throw a die 1000 times, the probability that the maximum that you get 

in 1000 throws is a 6 is almost equal to 1.  

The interesting thing is that this phenomenon does not depend on the shape of 𝐹(𝑎), provided that 

there exist two finite values 𝒂𝑳,𝒂𝑴 such that 𝐹(𝑎𝐿) = 0, 𝐹(𝑎𝑀) = 1 (otherwise the steps move infi-

nitely to the left and to the right respectively).   

 

3.6 Mean value 

The mean value (or expectation, or expected value) of a RV X is denoted with 𝐸 [𝑋] and computed 

as follows: 

- Discrete RV: 𝐸[𝑋] = ∑ 𝑥𝑖 ⋅ 𝑝(𝑥𝑖)𝑖  

- Continuous RV: 𝐸[𝑋] = ∫ 𝑥 ⋅ 𝑓(𝑥)𝑑𝑥
+∞

−∞
 

In the discrete case, it is the weighted sum of each value that the RV can take on, with the weights 

being given by the probability of that value. For the continuous case, it is slightly trickier to visualize, 

but a similar concept holds.   

In the discrete case, the PMF owes its very name to the fact that the expression of the mean value is 

akin to that of the center of mass. Assume that you have an axis, where weights equal to 𝑝(𝑥𝑖) are 

set in position 𝑥𝑖. In that case, 𝐸[𝑋] represents the point where the axis is in equilibrium. 

 

Example 

Let us compute the mean value for a six-faced die: 

𝐸[𝑋] =
1

6
⋅ (1 + 2 + 3 + 4 + 5 + 6) =

21

6
=
7

2
 

Note that, for discrete RVs, 𝑬 [𝑿] is not necessarily one of the values assumed by the RV, as this 

case clearly shows 

0 1 2 3 4 5 6

1/6 1/6 1/6 1/6 1/6 1/6

 

 

 

Example 
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An interesting (and often useful) discrete RV is the indicator variable for an event A. This is defined 

as follows: 

𝐼𝐴 = {
1 if 𝐴 occurs
0 if 𝐴 does not occur

 

Therefore, 𝑝(1) = 𝑃(𝐴), 𝑝(0) = 1 − 𝑃(𝐴). For this variable, we have: 

𝐸[𝐼𝐴] = 1 ⋅ 𝑝(1) + 0 ⋅ 𝑝(0) = 𝑝(1) = 𝑝(𝐴) 

The expected value of the indicator variable is the probability that event A occurs. 

 

 

Example 

Compute the mean value of the RV having the following PDF (already seen in a previous lesson): 

𝑓(𝑥) = {
3

8
⋅ (4𝑥 − 2𝑥2) 0 ≤ 𝑥 ≤ 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

If you remember the shape of the PDF, you’ll have few difficulties to observe that the mean value 

can only be one, by symmetry. Whenver the PDF is symmetric, its axis of symmetry is also the mean 

value. The computations should confirm this: 

𝐸[𝑋] = ∫ 𝑥 ⋅ 𝑓(𝑥)  𝑑𝑥
2

0

=
3

8
⋅ ∫ 𝑥 ⋅ (4𝑥 − 2𝑥2)

2

0

  𝑑𝑥  

=
3

8
⋅ ∫ (4𝑥2 − 2𝑥3)

2

0

  𝑑𝑥  

=
3

8
⋅ [
4

3
𝑥3 −

2

4
𝑥4]

0

2

=
3

8
⋅ [
32

3
−
32

4
]

=
3

8
⋅
32

12
= 1

 

 

In this case (a continuous RV), the mean value is the one for which you have the maximum proba-

bility density. In general, this is not the case. Worse yet, same as – for discrete RVs – not necessarily 

𝐸[𝑋] is a value taken by the RV, for continuous RVs it is not even true that 𝒇(𝑬[𝑿]) > 𝟎, in gen-

eral. In other words, 𝐸[𝑋] is not necessarily one value that we are ever going to observe in prac-

tice (or a value around which it is likely that observable values will coalesce). 
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For continuous RVs, it is enough to take an 𝑓( ) which is symmetric w.r.t. the ordinate axis and null 

in the origin. Straightforward symmetry considerations are enough to convince anyone that 𝐸[𝑋] is 

in the origin, but 𝑓(0) = 0, so you will never see anything close to zero in an experiment.  

x

f(x)

 

 

Take a discrete RV X (it works for continuous RVs as well), and assume that RV Y is a function of X, 

𝑌 = 𝑔(𝑋). Assume initially that 𝑔( ) is injective. This assumption will be removed later on, and it 

only serves the purpose of simplifying the exposition initially.  

.

.
.

.

.
.

Values of X Values of Y

xj yi

g( )

 

It is clear that 𝑝𝑌(𝑦𝑖) = 𝑝𝑋(𝑥𝑗) for any pair of values 𝑥𝑗,𝑦𝑖 such that 𝑦𝑖 = 𝑔(𝑥𝑗). Hence, the mean 

value of Y can be computed as: 

𝐸[𝑌] =∑ 𝑦𝑖 ⋅ 𝑝𝑌(𝑦𝑖)
𝑖

=∑ 𝑔(𝑥𝑗)𝑝𝑋(𝑥𝑗)
𝑗

= 𝐸[𝑔(𝑋)] 

If we remove the initial hypothesis that the function is injective, we obtain the probability that RV Y 

takes on value 𝑦𝑖 is the sum of the probabilities of all the values x that function 𝑔( ) maps into 

𝑦𝑖, i.e. 𝑝𝑌(𝑦𝑖) = ∑ 𝑝𝑋(𝑥𝑗)𝑗:𝑔(𝑥𝑗)=𝑦𝑖
 

.

.
.

.

. .

Values of X Values of Y

yi

xh

xk

xj

g( )

 

Hence, I can compute the mean value of Y again using the same formula as before: 
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𝐸[𝑌] =∑ 𝑦𝑖 ⋅ 𝑝𝑌(𝑦𝑖)
𝑖

=∑ 𝑦𝑖 ⋅ [∑ 𝑝𝑋(𝑥𝑗)
𝑗:𝑔(𝑥𝑗)=𝑦𝑖

]
𝑖

=∑ 𝑔(𝑥𝑗)𝑝𝑋(𝑥𝑗)
𝑗

= 𝐸[𝑔(𝑋)] 

In other words, the mean value of whatever function of a random variable is computed by weighing 

the function values by the probability that they occur.  

The same holds for continuous RVs as well (we are not going to prove it): 

𝐸[𝑔(𝑋)] = ∫ 𝑔(𝑥) ⋅ 𝑓(𝑥)𝑑𝑥
+∞

−∞

 

Let us show some examples: 

 

Example 

Consider the discrete RV X, with 𝑝(0) = 0.2, 𝑝(1) = 0.5, 𝑝(2) = 0.3. Compute 𝐸[𝑋2] 

RV 𝑋2 has values 0, 1 e 4 with probability 0.2, 0.5 e 0.3 respectively (function 𝑔( ) is in this case 

injective on the domain). Thus, we obtain: 

𝐸[𝑋2] = 0 ⋅ 0.2 + 1 ⋅ 0.5 + 4 ⋅ 0.3 = 1.7 

 

 

Example 

Continuous RV X is the time-to-repair (expressed in hours) of a failure in a power plant. Its PDF is: 

𝑓(𝑥) = {
1 0 ≤ 𝑥 < 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This means that all the failures are repaired within one hour. 

The cost of a failure is proportional to the third power of the time-to-repair. Compute the mean cost 

of a breakdown. We just need to apply the formula: 

𝐸[𝑋3] = ∫ 𝑥3 ⋅ 𝑓(𝑥)𝑑𝑥
+∞

−∞

= ∫ 𝑥3𝑑𝑥
1

0

= [
1

4
𝑥4]

0

1

=
1

4
 

 

 

Given that the way of computing the mean value of a function of a RV is true for whatever function, 

you readily obtain the following: 

𝐸[𝑎𝑋 + 𝑏] = 𝑎 ⋅ 𝐸[𝑋] + 𝑏 

You just need to define 𝑌 = 𝑔(𝑋) = 𝑎 ⋅ 𝑋 + 𝑏 and apply a well-known property. In other words, 

given any RV (whether discrete or continuous), scaling its values by a constant corresponds to scaling 

analogously the mean value. Furthermore, adding a constant offset to the values offsets the mean 

value as well. The proof is due to the linearity of sum/integral operators, and it is left as an exercise.  
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The mean value of an RV is also called first-order moment of that variable. In general, the nth-order 

moment of a RV is 𝐸[𝑋𝑛]. The 2nd-order moment is called mean square value.  

 

Finally, note that the mean value is dimensionally coherent with the values of the RV. If the RV’s 

values are  – say – square meters, then so is the mean value. 

3.6.1 Expectation of the sum of RVs 

We have shown the former property for functions of one RV. It holds for functions of two (n) random 

variables, provided that we know their joint PMF/PDF. 

In general: 

𝐸[𝑔(𝑋, 𝑌)] =

{
 

 ∑∑𝑔(𝑥, 𝑦) ⋅ 𝑝(𝑥, 𝑦) discreteRVs

∫ ∫ 𝑔(𝑥, 𝑦)𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 continuousRVs
 

A particular case is when 𝑔(𝑋, 𝑌) = 𝑋 + 𝑌 (sum of two random variables). In this case we have 

(we give the proof for the discrete case): 

𝐸[𝑋 + 𝑌] =∑∑(𝑥 + 𝑦)𝑝(𝑥, 𝑦)

𝑦𝑥

=∑∑𝑥 ⋅ 𝑝(𝑥, 𝑦)

𝑦𝑥

+∑∑𝑦 ⋅ 𝑝(𝑥, 𝑦)

𝑦𝑥

=∑𝑥 ⋅∑𝑝(𝑥, 𝑦)

𝑦𝑥

+∑𝑦 ⋅∑𝑝(𝑥, 𝑦)

𝑥𝑦

=∑𝑥 ⋅ 𝑝𝑋(𝑥)

𝑥

+∑𝑦 ⋅ 𝑝𝑌(𝑦)

𝑦

= 𝐸[𝑋] + 𝐸[𝑌]

 

The proof is almost identical for the continuous case, mutatis mutandis. In general, we have the fol-

lowing property: 

 

the mean value of the sum of n random variables (however distributed) 

is the sum of the mean values of the single variables 

 

In other words, ∑  and 𝑬[ ] commute. 

Note that we haven’t required any hypothesis on the independence of the two (n) RVs. The result 

holds in the most general case, even if RVs are not independent. 
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Exercise 

A secretary prints 𝑁 letters, that have to be inserted into 𝑁 sorted envelopes. A gust of wind blows 

them on the floor, in a random order, so that she does not know anymore which letter goes into which 

envelope.  

Suppose that she inserts letters randomly into envelopes. What is the mean value of the number of 

letters correctly paired with their envelope? 

 

Solution 

Deifne events 𝐴𝑖 as “the i-th letter goes into the i-th envelope”. It is 𝑃(𝐴𝑖) = 1 𝑁⁄ , and it does not 

depend on the index i. Now define RV 𝑋𝑖, the indicator variable for event 𝐴𝑖. It is: 𝑝𝑋𝑖(1) = 𝑝(𝐴𝑖) =

1 𝑁⁄ = 𝐸[𝑋𝑖], by definition. Now, We need to count how many letters are in the correct envelope, 

hence we need to sum up all the indicator RVs, i.e. we need to define 𝑌 = ∑ 𝑋𝑖
𝑁
𝑖=1 , and compute 

𝐸[𝑌]=𝐸[∑ 𝑋𝑖
𝑁
𝑖=1 ]. However, we know that: 

𝐸[∑ 𝑋𝑖
𝑁

𝑖=1
] =∑ 𝐸[𝑋𝑖]

𝑁

𝑖=1
= 𝑁 ⋅ 𝐸[𝑋𝑖] = 𝑁 ⋅ 1 𝑁⁄ = 1 

On average, whatever the number N, one letter only will find the right envelope. If this seems 

surprising, note that: 

- If 𝑁 = 1, then the result is obvious (there is nothing random in this experiment) 

- If 𝑁 = 2, you get to the same result through another route: either both letters are in the right 

envelope, or neither are. In the first case, the number of letter correctly filed is equal to 2. In the 

second case, it is equal to 0. The two outcomes are equally likely, hence the mean value is again 

1. 

Similar reasoning can be used for higher values of 𝑁. Note, by the way, that events 𝐴1, 𝐴2 are not 

independent (when 𝑁 = 2), hence RVs 𝑋1, 𝑋2 are not independent either. However, expectation and 

summation can commute even when RVs are not independent 

 

 

Exercise 

Assume that coupons can be of n different types, with identical probability, and that you pick k of 

them. Compute the mean value of RV 𝑋, which is the number of different types included in a set of 

k coupons. 
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Solution 

Again, we need to count the types of coupons. This means that it is useful to have indicator variables. 

Define the following RVs: 

𝑋𝑖 = {
1 at least one type − i coupon in the set of k
0 otherwise

 

It is not difficult to observe that 𝐸[𝑋] = 𝐸[∑ 𝑋𝑖
𝑛
𝑖=1 ] = ∑ 𝐸[𝑋𝑖]

𝑛
𝑖=1 = 𝑛 ⋅ 𝐸[𝑋𝑖]. 

In order to compute 𝐸[𝑋𝑖], it is enough to write down the definition: 

𝐸[𝑋𝑖] = 1 ⋅ 𝑃{𝑋𝑖 = 1} + 0𝑃{𝑋𝑖 = 0}

= 𝑃{𝑋𝑖 = 1}

= 1 − 𝑃{𝑋𝑖 = 0}

= 1 − (
𝑛−1

𝑛
)
𝑘

 

Then the correct result is: 

𝐸[𝑋] = 𝑛 ⋅ [1 − (
𝑛 − 1

𝑛
)
𝑘

] 

 

 

Exercise 

This exercise shows a property that will be useful later on.  

Prove that, if X and Y are two independent RVs, then 𝐸[𝑋𝑌] = 𝐸[𝑋] ⋅ 𝐸[𝑌] 

 

Solution 

We give the proof for the discrete case (the one for the continuous case is left as an exercise).  

𝐸[𝑋𝑌] = ∑ ∑ 𝑥 ⋅ 𝑦 ⋅ 𝑝(𝑥, 𝑦)𝑦𝑥

= ∑ ∑ 𝑥 ⋅ 𝑦 ⋅ 𝑝𝑋(𝑥) ⋅ 𝑝𝑌(𝑦)𝑦𝑥

= ∑ 𝑥 ⋅ 𝑝𝑋(𝑥) ⋅ ∑ 𝑦 ⋅ 𝑝𝑌(𝑦)𝑦𝑥

= 𝐸[𝑋] ⋅ 𝐸[𝑌]

 

 

 

3.7 Variance 

The mean value allows one to summarize economically as much information as possible on a given 

distribution. The mean value, alone, is a good indicator (it is the minimum-error predictor for the 

value of a RV). However, it is often insufficient. 

  

Each of the k coupons has in-

dependent probability of be-

ing of one type. 

This is due to independence 
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We are interested in determining how dispersed 

the values of a RV are around their mean value. 

The two densities reported in the figure have the 

same mean (zero), but in the second case large-

modulus value are more likely than in the first.  

f(x)

x  

The measure of how much a RV is dispersed around its mean value is called variance, and it is 

defined as: 

𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2] 

A question which comes out naturally is why the square. First of all, we need something to cancel 

out signs, otherwise defects and surpluses would compensate. It is in fact obvious that: 

𝐸[𝑋 − 𝜇] = 𝐸[𝑋] − 𝜇 = 0. 

In order to dispense with the sign you need either a modulus or an even power. The even power is 

preferable because it is analytically more tractable (it preserves differentiability, for instance).  

Very often in practice, variance is computed as follows: 

𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2]

= 𝐸[𝑋2 + 𝜇2 − 2𝜇 ⋅ 𝑋]

= 𝐸[𝑋2] + 𝜇2 − 2𝜇 ⋅ 𝐸[𝑋]

= 𝐸[𝑋2] − 𝜇2

= 𝐸[𝑋2] − 𝐸[𝑋]2

 

In other words, variance is the mean square value minus the square of the mean value.  

Note that the variance (unlike the mean value) is not dimensionally identical to the RV values. For 

instance, if the RV – dimensionally speaking – is a time, its variance is a time squared. If needed, one 

can compute the standard deviation, defined as: 

𝑆𝑡𝐷𝑒𝑣(𝑋) = √𝑉𝑎𝑟(𝑋) 

Let us compute some simple variances. 

 

Example 

Compute the variance for a six-faced die 

𝐸[𝑋] =
1

6
⋅ (1 + 2 + 3 + 4 + 5 + 6) =

21

6
=

7

2
  

𝐸[𝑋2] =
1

6
⋅ (1 + 4 + 9 + 16 + 25 + 36) =

91

6
 

Hence, with the above formula, we get: 

Already computed 
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𝑉𝑎𝑟(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋]2 =
91

6
− (

7

2
)
2

=
91

6
−
49

4
=
182 − 147

12
=
35

12
 

 

 

Example 

Let us compute the variance for the indicator RV. For this, we remind that it is 𝐸[𝐼𝐴] = 𝑃(𝐴). If we 

develop the computations, we obtain 

𝑉𝑎𝑟(𝐼𝐴) = 𝐸[𝐼𝐴
2] − 𝐸[𝐼𝐴]

2

= 𝐸[𝐼𝐴] − 𝐸[𝐼𝐴]
2

= 𝐸[𝐼𝐴] ⋅ (1 − 𝐸[𝐼𝐴])

= 𝑃(𝐴) ⋅ [1 − 𝑃(𝐴)]

 

Which tells us that the variance is maximum when event A has a probability equal to ½.  

 

Example 

Compute the variance for the RV characterized by the following PDF (already encountered before). 

𝑓(𝑥) = {
3

8
⋅ (4𝑥 − 2𝑥2) 0 ≤ 𝑥 ≤ 2

0 𝑎𝑙𝑡𝑟𝑖𝑚𝑒𝑛𝑡𝑖

 

We remember that the mean value is one (by symmetry, and we also did the computations). For the 

variance, we have: 

𝐸[𝑋2] = ∫ 𝑥2 ⋅ 𝑓(𝑥)  𝑑𝑥
2

0

=
3

8
⋅ ∫ (4𝑥3 − 2𝑥4)

2

0

  𝑑𝑥  

=
3

8
⋅ [
4

4
𝑥4 −

2

5
𝑥5]

0

2

=
3

8
⋅ [16 −

64

5
]

=
3

8
⋅
16

5
=
6

5

 

Hence: 

𝑉𝑎𝑟(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋]2 =
6

5
− (1)2 =

1

5
 

 

Since 𝐼𝐴
2 = 𝐼𝐴 
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3.7.1 Variance of sums of RVs 

We have seen that, for the mean value, it is 𝐸[𝑎𝑋 + 𝑏] = 𝑎 ⋅ 𝐸[𝑋] + 𝑏. This is because the expecta-

tion is a linear operator. We cannot expect the same property to hold for the variance, which is instead 

quadratic.  

𝑉𝑎𝑟(𝑎𝑋 + 𝑏) = 𝐸[(𝑎 ⋅ 𝑋 + 𝑏 − 𝐸[𝑎𝑋 + 𝑏])2]

= 𝐸[(𝑎 ⋅ 𝑋+𝑏 − 𝑎 ⋅ 𝐸[𝑋]−𝑏)2]

= 𝐸[𝑎2 ⋅ (𝑋 − 𝜇)2]

= 𝑎2 ⋅ 𝑉𝑎𝑟(𝑋)

 

This tells us that: 

- Offsets do not matter. If you move the distribution on the horizontal axis, then the mean 

value does change, but the dispersion around the mean value does not.  

- Rescaling does matter: if you rescale the RV by a constant factor, you are either  

o Compressing the distribution (if 𝑎 < 1) 

o Spreading out the distribution (if 𝑎 > 1) 

In both cases, the multiplying constant is squared, because a square is inherent in the concept of 

variance.  

We have also seen that ∑  and 𝑬[ ] commute, i.e. the mean value of the sum is the sum of mean 

values. This is not true of the variance, however. A straightforward counterexample is the follow-

ing: 𝑉𝑎𝑟(𝑋 + 𝑋) = 𝑉𝑎𝑟(2𝑋) = 4 ⋅ 𝑉𝑎𝑟(𝑋) (remember that there’s a square). 

Therefore, we need to figure out what the formula is for the variance of the sum of two variables in 

general. 

𝑉𝑎𝑟(𝑋 + 𝑌) = 𝐸 [(𝑋 + 𝑌 − (𝜇𝑋 + 𝜇𝑌))
2
]

= 𝐸[(𝑋 − 𝜇𝑋 + 𝑌 − 𝜇𝑌)
2]

= 𝐸[(𝑋 − 𝜇𝑋)
2 + (𝑌 − 𝜇𝑌)

2 + 2(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

= 𝐸[(𝑋 − 𝜇𝑋)
2] + 𝐸[(𝑌 − 𝜇𝑌)

2] + 2𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

= 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌) + 2𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

 

The last term is called covariance of X, Y. The definition is 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]. 

If you develop the computations for the covariance, you find the following: 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

= 𝐸[𝑋 ⋅ 𝑌 + 𝜇𝑋 ⋅ 𝜇𝑌 − 𝑌 ⋅ 𝜇𝑋 − 𝑋 ⋅ 𝜇𝑌]

= 𝐸[𝑋 ⋅ 𝑌] + 𝐸[𝜇𝑋 ⋅ 𝜇𝑌] − 𝐸[𝑌 ⋅ 𝜇𝑋] − 𝐸[𝑋 ⋅ 𝜇𝑌]

= 𝐸[𝑋 ⋅ 𝑌] + 𝜇𝑋 ⋅ 𝜇𝑌 − 𝜇𝑋 ⋅ 𝜇𝑌 − 𝜇𝑋 ⋅ 𝜇𝑌
= 𝐸[𝑋 ⋅ 𝑌] − 𝜇𝑋 ⋅ 𝜇𝑌

 

Therefore, the covariance is the expectation of the product minus the product of the expectations. 

We can observe that: 

Permute the terms 

Develop the square binomial  

Distribute E[] over the sum 
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- covariance is commutative: 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐶𝑜𝑣(𝑌, 𝑋). 

- 𝐶𝑜𝑣(𝑋, 𝑋) = 𝑉𝑎𝑟(𝑋). This is straightforward, you just need to substitute in the above 

expression 

- If X and Y are independent RVs, then it is 𝐸[𝑋 ⋅ 𝑌] = 𝜇𝑋 ⋅ 𝜇𝑌 (we learned it from a pre-

vious exercise), hence 𝐶𝑜𝑣(𝑋, 𝑌) = 0 

This means that:  

For independent RVs, the variance of the sum is the sum of the variances. 

 

Of course, this is not true in general, since for non-independent RVs covariances are not null. Note 

that the reverse is generally false: there are couples of RVs which are not independent, and whose 

covariance is null.  

The above formula can be generalized for the case of the sum of n variables. 

𝑉𝑎𝑟 (∑𝑋𝑖
𝑖

) =∑𝑉𝑎𝑟(𝑋𝑖)

𝑖

+∑∑𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

𝑗≠𝑖𝑖

=∑∑𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

𝑗𝑖

 

3.7.2 Covariance and correlation 

The covariance of two variables can be positive, negative or null. The covariance (and, more spe-

cifically, its sign) has an important physical interpretation. To show this, define two events A and B, 

and the related indicator RVs 𝐼𝐴, 𝐼𝐵: 

𝐼𝐴 = {
1 if 𝐴 occurs
0 if 𝐴 does not occur

,        𝐼𝐵 = {
1 if 𝐵 occurs
0 if 𝐵 does not occur

 

RV 𝐼𝐴 ⋅ 𝐼𝐵 is equal to one if and only if event AB occurs. Let us compute now 𝐶𝑜𝑣(𝐼𝐴, 𝐼𝐵): 

𝐶𝑜𝑣(𝐼𝐴, 𝐼𝐵) = 𝐸[𝐼𝐴 ⋅ 𝐼𝐵] − 𝐸[𝐼𝐴] ⋅ 𝐸[𝐼𝐵]

= 𝑃(𝐴𝐵) − 𝑃(𝐴) ⋅ 𝑃(𝐵)
 

Now,  

- if 𝐶𝑜𝑣(𝐼𝐴, 𝐼𝐵) > 0, then 𝑃(𝐴𝐵) > 𝑃(𝐴) ⋅ 𝑃(𝐵), hence  

𝑃(𝐴|𝐵) =
𝑃(𝐴𝐵)

𝑃(𝐵)
> 𝑃(𝐴) 

- Conversely, if 𝐶𝑜𝑣(𝐼𝐴, 𝐼𝐵) < 0, then 𝑃(𝐴𝐵) < 𝑃(𝐴) ⋅ 𝑃(𝐵), hence  

𝑃(𝐴|𝐵) =
𝑃(𝐴𝐵)

𝑃(𝐵)
< 𝑃(𝐴) 
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The same is also true of 𝑃(𝐵|𝐴) (recall that covariance is symmetric, and so is intersection). This 

means that: 

- A positive covariance indicates that A is more likely to occur if B occurs. 

- A negative covariance indicates that  A is less likely to occur if B occurs. 

And it is fairly obvious that the two events influence each other. If they were independent, their 

covariance would be null. 

In general, if you take 2 RVs X, Y, then a positive covariance means that large values of X often 

come together with large values of Y. A negative covariance instead means that large values of X 

often come together with small values of Y instead. A normalized measure of the above effect is called 

correlation, and is the following: 

𝐶𝑜𝑟𝑟(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)

√𝑉𝑎𝑟(𝑋) ⋅ 𝑉𝑎𝑟(𝑌)
 

It can be shown (you can do it as an exercise) that −1 ≤ 𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≤ +1. When the correlation is 

positive, the higher it is the more likely it is that you find high values of X paired with high values of 

Y, etc. etc.  

 

 



Notes on probability theory (student version) – Giovanni Stea – last saved 16/10/2022 15:07:00 

61 

 

4 Special random variables 

Some RVs are often encountered in practice. This happens because they are good models of some 

aspects of reality (recall that this is a course about modeling). We now review them, and we observe 

that we have already met most of them during the previous lectures. 

4.1 Discrete distributions 

4.1.1 Bernoulli distribution 

A Bernoullian RV is a discrete RV, which is equal to 1 with probability p and to 0 with probability 

(1-p).  It is the same thing as an indicator variable for an event whose probability is p. Bernoullian 

experiments are those with a binary outcome, often referred to as success/failure.   

As we have already seen, its parameters are: 

- Mean value: 𝐸[𝑋] = 𝑝 

- Variance: 𝑉𝑎𝑟(𝑋) = 𝑝 ⋅ (1 − 𝑝) 

Which shows that the maximum uncertainty is achieved when 𝑝 = 1 2⁄ . 

4.1.2 Binomial distribution 

This one is obtained from the Bernoullian, and it represents the number of successes in n repeated 

trials in independent conditions, where each trial has a probability of success equal to p.  

Thus, a binomial distribution is a discrete one, characterized by two parameters, n and p.  Compu-

ting its PMF is rather simple: 

𝑝(𝑖) = 𝑃{𝑋 = 𝑖} = (
𝑛
𝑖
) 𝑝𝑖 ⋅ (1 − 𝑝)𝑛−𝑖 

The fact that the one above is indeed a PMF is confirmed by the normalization condition, which is 

easy to test thanks to Newton’s binomial formula (hence the name of the distribution): 

∑ 𝑝(𝑖)
𝑛

𝑖=0
=∑ (

𝑛
𝑖
)

𝑛

𝑖=0
𝑝𝑖 ⋅ (1 − 𝑝)𝑛−𝑖 = [𝑝 + (1 − 𝑝)]𝑛 = 1 

We have already met this RV in a previous exercise.  

Let us compute the mean value and the variance. In order to do so, it is enough to observe that a 

binomial variable is the sum of n iid Bernoullian RVs, hence: 

- 𝐸[𝑋] = 𝐸[∑ 𝑋𝑖
𝑛
𝑖=1 ] = ∑ 𝐸[𝑋𝑖] = 𝑛 ⋅ 𝑝

𝑛
𝑖=1  

- Since they are independent, I can sum the variances of the single Bernoullian variables: 

𝑉𝑎𝑟(𝑋) = 𝑉𝑎𝑟 (∑ 𝑋𝑖
𝑛

𝑖=1
) =∑ 𝑉𝑎𝑟(𝑋𝑖)

𝑛

𝑖=1
= 𝑛 ⋅ [𝑝 ⋅ (1 − 𝑝)] 

Let us see what a binomial PMF looks like: 
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The following observations are in order 

- It takes on positive values between 0 and n (and it is null outside that interval) 

- It is symmetric only if p=0.5. In fact, in this case it can be easily shown that 𝑝(𝑖) =

𝑝(𝑛 − 𝑖) (since (
𝑛
𝑖
) = (

𝑛
𝑛 − 𝑖

)). Otherwise it is skewed either to the left or to the right, 

depending on whether p<0.5 or vice versa. 

- It has its maximum value around np (the latter number may not be an integer) 

 

A fairly obvious property of binomial variables is the following: 

If 𝑋1~(𝑛1, 𝑝) and 𝑋2~(𝑛2, 𝑝) are two independent RVs,then 𝑋1 + 𝑋2~(𝑛1 + 𝑛2, 𝑝). 

 

The property is obvious since the binomial counts the number of successes in the sum of the trials (if 

the two repeated trials have the same probability of success, that is, and RVs are independent). 

4.1.3 Poisson distribution 

A discrete RV is said to be Poissonian (of Poisson) with parameter 𝜆 > 0 if its PMF is the following: 

𝑝(𝑖) = 𝑃{𝑋 = 𝑖} = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!
, for each 𝑖 ≥ 0 

Therefore, a Poissonian variable can assume arbitrarily large values. The one written above is a 

PMF, which can be tested using the normalization condition: 

∑𝑝(𝑖)

+∞

𝑖=0

=∑ 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!

+∞

𝑖=0

= 𝑒−𝜆 ⋅∑
𝜆𝑖

𝑖!

+∞

𝑖=0

= 𝑒−𝜆 ⋅ 𝑒𝜆 = 1 
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Now, the above one is an infinite series. Therefore, it can converge only if lim
𝑖→∞

𝜆𝑖

𝑖!
= 0. This means 

that the Poissonian PMF goes to zero as i grows large.  

Let us compute its mean value and variance. Note that the book uses a different mathematical trick, 

which I find harder to understand, hence my computations will be slightly different (but will get you 

to the same result).  

𝐸[𝑋] =∑𝑖 ⋅ (𝑒−𝜆 ⋅
𝜆𝑖

𝑖!
)

+∞

𝑖=0

=∑𝑖 ⋅ (𝑒−𝜆 ⋅
𝜆𝑖

𝑖!
)

+∞

𝑖=1

= 𝑒−𝜆 ⋅ 𝜆 ⋅∑𝑖 ⋅ (
𝜆𝑖−1

𝑖 ⋅ (𝑖 − 1)!
)

+∞

𝑖=1

= 𝑒−𝜆 ⋅ 𝜆 ⋅∑(
𝜆𝑖

𝑖!
)

+∞

𝑖=0

= 𝑒−𝜆 ⋅ 𝜆 ⋅ 𝑒𝜆

= 𝜆

 

Therefore, parameter 𝜆 > 0 is the mean value of the Poissonian variable. 

Now, for the variance, we just apply the formula 𝑉𝑎𝑟(𝑋) = 𝐸[𝑋2] − 𝜇2 = 𝐸[𝑋2] − 𝜆2. Let us com-

pute the mean square value: 

𝐸[𝑋2] = ∑𝑖2 ⋅ (𝑒−𝜆 ⋅
𝜆𝑖

𝑖!
)

+∞

𝑖=0

= 𝑒−𝜆 ⋅ 𝜆 ⋅∑𝑖 ⋅ 𝑖 ⋅
𝜆𝑖−1

𝑖 ⋅ (𝑖 − 1)!

+∞

𝑖=1

= 𝑒−𝜆 ⋅ 𝜆 ⋅∑(𝑗 + 1) ⋅
𝜆𝑗

𝑗!

+∞

𝑗=0

= 𝑒−𝜆 ⋅ 𝜆 ⋅ [∑𝑗 ⋅
𝜆𝑗

𝑗!

+∞

𝑗=0

+∑
𝜆𝑗

𝑗!

+∞

𝑗=0

]

= 𝑒−𝜆 ⋅ 𝜆 ⋅ [𝑒𝜆 ⋅ 𝜆 + 𝑒𝜆]

= 𝜆2 + 𝜆

 

Therefore, the variance is: 𝑉𝑎𝑟(𝑋) = (𝜆2 + 𝜆) − 𝜆2 = 𝜆. Hence, 𝜆 is also the variance.  

Let us find out what a Poisson looks like. We know that lim
𝑖→∞

𝑝(𝑖) = 0. Moreover, it is 𝑝(0) = 𝑒−𝜆.  

Now, if: 
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- 𝜆 ≤ 1: the PMF is decreasing (at the numerator, we always multiply for something which 

is less than 1) 

- 𝜆 > 1: the PMF increases while 𝑖 < 𝜆, and then it decreases when 𝑖 > 𝜆. Hence, in this 

case it will peak around 𝝀 (which may not be an integer).  

In any case, the distribution is skewed, and the right tail extends to infinity.  

 

So, apart from an elegant mathematical formulation, has the Poissonian variable any physical 

meaning? The answer is yes, because: 

The Poissonian variable approximates rather well a binomial variable with: 

- A large n  

- A small p 

- 𝝀 = 𝒏 ⋅ 𝒑 

 

In other words, if we want to count the occurrence of unlikely events in a large number of inde-

pendent repeated trials, then the Poissonian can help us. The Poissonian variable approximates ra-

ther well 

- The number of typos in the page of a book 

- The number of 100-year-old in a large population 

- … 

We could do it using a binomial, of course, but this is more economical from a computational stand-

point. Recall that a binomial requires large powers, binomial coefficients (with large factorials), 

etc.. If n is very large, then computing those coefficients is hard from a numerical standpoint (ill-

conditioned numbers). Using a Poissonian can help you in this case. 
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The proof is easy. Take the PMF of the binomial, and observe that, by simply substituting 𝜆 = 𝑛 ⋅ 𝑝, 

we get: 

𝑃{𝑋 = 𝑖} = (
𝑛
𝑖
) 𝑝𝑖 ⋅ (1 − 𝑝)𝑛−𝑖

=
𝑛 ⋅ (𝑛 − 1) ⋅. . .⋅ (𝑛 − 𝑖 + 1)

𝑖!
⋅ (
𝜆

𝑛
)
𝑖

⋅
(1 − 𝜆 𝑛⁄ )𝑛

(1 − 𝜆 𝑛⁄ )𝑖

=
𝑛 ⋅ (𝑛 − 1) ⋅. . .⋅ (𝑛 − 𝑖 + 1)

𝑛𝑖
⋅
𝜆𝑖

𝑖!
⋅
(1 − 𝜆 𝑛⁄ )𝑛

(1 − 𝜆 𝑛⁄ )𝑖

 

Now, if n is large, we have: 

𝑛 ⋅ (𝑛 − 1) ⋅. . .⋅ (𝑛 − 𝑖 + 1)

𝑛𝑖
≈ 1 

(1 − 𝜆 𝑛⁄ )𝑛 ≈ 𝑒−𝜆 

(1 − 𝜆 𝑛⁄ )𝑖 ≈ 1 

Hence we get 𝑃{𝑋 = 𝑖} ≈
𝜆𝑖

𝑖!
⋅ 𝑒−𝜆, which is a Poisson PMF. 

 

Exercise 

The average number of weekly accidents on a motorway segment is equal to 3. What is the probability 

that there will be at least one accident next week? 

 

Solution 

It is reasonable to think that  

a) Very many cars travel on a motorway segment every week 

b) The probability of an accident is quite low 

If I knew both the number of cars and the probability of an accident, I could (theoretically) use a 

binomial RV (assuming that I can compute so large a factorial). The problem is that I do not know 

these data. However, I can reasonably model the problem using a Poissonian variable with a mean 

value 𝜆 = 3. Hence: 

𝑃{𝑋 ≥ 1} = 1 − 𝑃{𝑋 = 0} = 1 − 𝑝(0) = 1 − 𝑒−3 ⋅
30

0!
= 1 − 𝑒−3 = 0.95 

 

 

An important property (which is useful in practice) of poissonian variables is the following: 

Take two independent Poissonian RVs 𝑋1~𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1), 𝑋2~𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2). Then RV 𝑋1 + 𝑋2 is it-

self poissonian, with a mean 𝜆1 + 𝜆2. 
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Proof 

𝑝(𝑘) = 𝑃{𝑋1 + 𝑋2 = 𝑘}

=∑𝑃{𝑋1 = 𝑖, 𝑋2 = 𝑘 − 𝑖}

𝑘

𝑖=0

=∑𝑃{𝑋1 = 𝑖} ⋅ 𝑃{𝑋2 = 𝑘 − 𝑖}

𝑘

𝑖=0

(by independence)

=∑[(𝑒−𝜆1 ⋅
𝜆1
𝑖

𝑖!
) ⋅ (𝑒−𝜆2 ⋅

𝜆2
𝑘−𝑖

(𝑘 − 𝑖)!
)]

𝑘

𝑖=0

(
mul

div
 by 𝑘!)

=
𝑒−(𝜆1+𝜆2)

𝑘!
⋅∑[

𝜆1
𝑖

𝑖!
⋅
𝜆2
𝑘−𝑖

(𝑘 − 𝑖)!
⋅ 𝑘!]

𝑘

𝑖=0

=
𝑒−(𝜆1+𝜆2)

𝑘!
⋅∑[(

𝑘
𝑖
) 𝜆1

𝑖 ⋅ 𝜆2
𝑘−𝑖]

𝑘

𝑖=0

=
𝑒−(𝜆1+𝜆2)

𝑘!
⋅ (𝜆1 + 𝜆2)

𝑘

 

 

4.1.4 Geometric distribution1 

The geometric distribution measures number of failures before the first success in a repeated trial 

experiment. Therefore, it takes values in [0, +∞), and its characteristic values (mean, variance) must 

depend on the trial success probability 𝑝.  

Note: a different definition exists, whereby the geometric distribution counts the of trials required 

to get the first success, hence takes values in [1, +∞), and has slightly different characteristic values.  

Given the definition that we have assumed, it is easy to see that 𝑃{𝑋 = 0} = 𝑝. In fact, you need to 

have one successful trial in order to have 0 failures. Moving forward: 

𝑃{𝑋 = 1} = (1 − 𝑝) ⋅ 𝑝 

𝑃{𝑋 = 2} = (1 − 𝑝)2 ⋅ 𝑝 

… 

Therefore: 𝑃{𝑋 = 𝑘} = (1 − 𝑝)𝑘 ⋅ 𝑝,        𝑘 ≥ 0 

Therefore, the PMF is a decreasing sequence, which decays exponentially. As far as the CDF is 

concerned, we can see that: 

 

1 Not on the Ross book 



Notes on probability theory (student version) – Giovanni Stea – last saved 16/10/2022 15:07:00 

67 

 

𝑃(𝑋 ≤ 𝑘) =∑(1 − 𝑝)𝑖 ⋅ 𝑝

𝑘

𝑖=0

= 𝑝 ⋅
1 − (1 − 𝑝)𝑘+1

1 − (1 − 𝑝)

= 1 − (1 − 𝑝)𝑘+1

 

 Therefore, the CDF grows exponentially, and lies more to the right if p is small. 

 

If, instead, you use the version of the geometric that counts the number of trials to the first success, 

you have: 

𝑝(𝑘) = 𝑃{𝑋 = 𝑘} = (1 − 𝑝)𝑘−1 ⋅ 𝑝,        𝑘 ≥ 1 

𝐹(𝑘) = 𝑃{𝑋 ≤ 𝑘} = 1 − (1 − 𝑝)𝑘,        𝑘 ≥ 1 

And the plots are roughly the same. 

Computing the moments is not too easy (whichever the version). For the one counting failures, we 

have:  

𝐸[𝑋] = ∑ 𝑘 ⋅ (1 − 𝑝)𝑘 ⋅ 𝑝+∞
𝑘=0

= 𝑝 ⋅ (1 − 𝑝) ⋅ ∑
𝜕

𝜕𝑝
− [(1 − 𝑝)𝑘]+∞

𝑘=1

= −𝑝 ⋅ (1 − 𝑝) ⋅
𝜕

𝜕𝑝
∑ (1 − 𝑝)𝑘+∞
𝑘=1

= −𝑝 ⋅ (1 − 𝑝) ⋅
𝜕

𝜕𝑝
[
1

𝑝
− 1]

=
1−𝑝

𝑝

 

Moreover, the variance can be shown to be 𝜎2 =
1−𝑝

𝑝2
 . In order to compute it, we will use a different 

technique, which we will introduce later.  

The geometric distribution has a very important property. It is memoryless, and it is the only discrete 

distribution to have this property (we will see later on the continuous counterpart of the geometric 

distribution). Assuming the “failure” definition of the geometric, memoryless means that: 

Start from 1 
Bring out 𝑝(1 − 𝑝) 
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𝑃{𝑋 ≥ 𝑛 +𝑚|𝑋 ≥ 𝑛} = 𝑃{𝑋 ≥ 𝑚}. 

Let us put this into context using a simple example. Assume that your experiment (e.g., getting 

“heads” out of a coin flip) has failed for 𝑛 times, and you ask yourself what the probability is that it 

will fail for 𝑚 more times before you get a success. Clearly, since coin flips are independent trials, 

you cannot gain anything by knowing the past. The answer is independent of how many times in the 

past the experiment has failed. 

Let us prove it formally. Recall that in the “failures” version 𝐹(𝑘) = 1 − (1 − 𝑝)𝑘+1. 

𝑃{𝑋 ≥ 𝑛 +𝑚|𝑋 ≥ 𝑛} =
𝑃{𝑋 ≥ 𝑛 +𝑚,𝑋 ≥ 𝑛}

𝑃{𝑋 ≥ 𝑛}

=
𝑃{𝑋 ≥ 𝑛 +𝑚}

𝑃{𝑋 ≥ 𝑛}
=
1 − 𝑃{𝑋 ≤ 𝑛 +𝑚 − 1}

1 − 𝑃{𝑋 ≤ 𝑛 − 1}

=
1 − [1 − (1 − 𝑝)𝑛+𝑚]

1 − [1 − (1 − 𝑝)𝑛]

= (1 − 𝑝)𝑚

= 𝑃{𝑋 ≥ 𝑚}

 

Note that, if you use the “trials” version of the geometric RV, the memoryless properties still holds, 

but strict inequalitites are to be used instead of weak ones. This makes perfect sense. In fact, if you 

call 𝑋 and 𝑌 the “failures” and “trials” version of a geometric RV, it is obviously 𝑃{𝑋 ≥ 𝑛} = 𝑃{𝑌 >

𝑛}. 

A common mistake is sometimes made, which I now advise against. The memoryless property is 

sometimes mistaken for the following (wrong) statement: 

𝑃{𝑋 ≥ 𝑛 +𝑚|𝑋 ≥ 𝑛} = 𝑃{𝑋 ≥ 𝑛 +𝑚} 

This could only be true if {𝑋 ≥ 𝑛 +𝑚} and {𝑋 ≥ 𝑛} were independent, which they are not. In fact,  

𝑃{𝑋 ≥ 𝑛 +𝑚|𝑋 ≥ 𝑛} =
𝑃{𝑋≥𝑛+𝑚}

𝑃{𝑋≥𝑛}
≠ 𝑃{𝑋 ≥ 𝑛 +𝑚}. 

For an example of usage of the geometric RV, see the Appendix at the end.  

4.1.5 Probability-generating Functions 

For discrete and nonnegative RVs (i.e., all the ones we have seen so far), we can exploit a z-trans-

form, or probability-generating function (PGF). For a RV X, the PGF is defined as:  

𝐺(𝑧) = 𝐸[𝑧𝑋] = ∑ 𝑝𝑛 ⋅ 𝑧
𝑛+∞

𝑛=0 , 

where z is a complex number. The above sum converges if |𝑧| ≤ 1, i.e., in the unitary disc, hence G 

is only defined therein.  

The PGF is useful for computing distribution moments. In fact, here are some of its properties: 

- the normalization condition can be expressed as follows: 𝐺(1) = ∑ 𝑝𝑛 ⋅ 1
𝑛+∞

𝑛=0 = 1 
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- the mean value can be expressed as follows: 𝐸[𝑋] = ∑ 𝑝𝑛 ⋅ 𝑛
+∞
𝑛=0 =

𝜕

𝜕𝑧
[∑ 𝑝𝑛 ⋅ 𝑧

𝑛+∞
𝑛=0 ]𝑧=1 = 𝐺′(1) 

- for the same reason, we get  

𝐸[𝑋(𝑋 − 1)] =∑ 𝑝𝑛 ⋅ 𝑛
+∞

𝑛=0
⋅ (𝑛 − 1) =

𝜕2

𝜕𝑧2
[∑ 𝑝𝑛 ⋅ 𝑧

𝑛
+∞

𝑛=0
]
𝑧=1

= 𝐺"(1) 

This means that  

- the variance can be computed as:  

𝑉𝑎𝑟(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋]2 = 𝐸[𝑋(𝑋 − 1)] + 𝐸[𝑋] − 𝐸[𝑋]2 = 𝐺"(1) + 𝐺′(1) − 𝐺′(1)2 

And so can other moments, if necessary. 

Some other interesting properties are: 

- univocity: if two RVs X, Y have the same PGFs, then they have the same PMFs and vice versa. This 

means that ∀𝑧, 𝐺𝑋(𝑧) = 𝐺𝑌(𝑧) ⇔ ∀𝑛, 𝑃{𝑋 = 𝑛} = 𝑃{𝑌 = 𝑛}. This implies that the PGF has all the 

information of a PMF.  

- convolution: if you have n independent RVs (not necessarily identical) 𝑋1, . . . , 𝑋𝑛, and you know 

their PGFs 𝐺1(𝑧), . . . , 𝐺𝑛(𝑧), then you can easily get the PGF of their sum 𝑆 = 𝑋1+. . . +𝑋𝑛 as: 

𝐺𝑆(𝑧) = 𝐸[𝑧
𝑋1+...+𝑋𝑛] = 𝐸[𝑧𝑋1 ⋅ 𝑧𝑋2 ⋅. . .⋅ 𝑧𝑋𝑛]

= 𝐸[𝑧𝑋1] ⋅ 𝐸[𝑧𝑋2] ⋅. . .⋅ 𝐸[𝑧𝑋𝑛]

= 𝐺1(𝑧) ⋅ 𝐺2(𝑧) ⋅. . .⋅ 𝐺𝑛(𝑧)

 

That is, you just multiply their PGFs. The middle passage is due to independence, of course. 

 

Here are some examples of PGFs for the discrete RVs that we have encountered so far: 

- Bernoulli: 𝑝(0) = 1 − 𝑝,    𝑝(1) = 𝑝. Thus, 𝐺(𝑧) = (1 − 𝑝) ⋅ 𝑧0 + 𝑝 ⋅ 𝑧1 = 1 − 𝑝 + 𝑝 ⋅ 𝑧 

- Binomial: 𝑝(𝑖) = (
𝑛
𝑖
) 𝑝𝑖 ⋅ (1 − 𝑝)𝑛−𝑖. Thus, 

𝐺(𝑧) =∑ (
𝑛
𝑖
) 𝑝𝑖 ⋅ (1 − 𝑝)𝑛−𝑖 ⋅ 𝑧𝑖

𝑛

𝑖=0
= [𝑝 ⋅ 𝑧 + (1 − 𝑝)]𝑛 

This one could have been found more quickly using convolution, by reasoning that the bino-

mial is indeed the sum of n independent Bernoullians. 

- Poisson: 𝑝(𝑖) = 𝑒−𝜆 ⋅
𝜆𝑖

𝑖!
. Thus, 𝐺(𝑧) = ∑ 𝑒−𝜆 ⋅

𝜆𝑖

𝑖!
⋅ 𝑧𝑖+∞

𝑖=0 =
𝑒−𝜆

𝑒−𝜆𝑧
⋅ ∑ 𝑒−𝜆𝑧 ⋅

(𝜆𝑧)𝑖

𝑖!

+∞
𝑖=0 =

𝑒−𝜆+𝜆𝑧 

- Geometric (“failures”): 𝑝(𝑖) = (1 − 𝑝)𝑖 ⋅ 𝑝 . Thus, 𝐺(𝑧) = ∑ (1 − 𝑝)𝑖 ⋅ 𝑝 ⋅ 𝑧𝑖+∞
𝑖=0 =

𝑝

1−𝑧⋅(1−𝑝)
 

We can use the above examples and theorems to compute moments that we have already found to 

be difficult to compute.  Here are some examples: 
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For the Poisson distribution, computing the variance is lengthy, at best. Here is how to do it: 

𝐺(𝑧) = 𝑒−𝜆+𝜆𝑧 = 𝑒−𝜆 ⋅ 𝑒𝜆𝑧 

𝐺′(𝑧) = 𝜆 ⋅ 𝑒−𝜆 ⋅ 𝑒𝜆𝑧, hence 𝐺′(1) = 𝜆 

𝐺"(𝑧) = 𝜆2 ⋅ 𝑒−𝜆 ⋅ 𝑒𝜆𝑧, hence 𝐺"(𝑧) = 𝜆2 

Thus,  

𝜎2 = 𝐺"(1) + 𝐺′(1) − 𝐺′(1)2 = 𝜆2 + 𝜆 − 𝜆2 = 𝜆 

For the geometric distribution, we gave the mean for granted without computing it. The computation 

is instead very easy if you switch to the PGF: 

𝐺′(𝑧) =
𝜕

𝜕𝑧

𝑝

1 − 𝑧 ⋅ (1 − 𝑝)
= 𝑝 ⋅ {−[1 − 𝑧 ⋅ (1 − 𝑝)]−2} ⋅ [−(1 − 𝑝)] =

𝑝(1 − 𝑝)

[1 − 𝑧 ⋅ (1 − 𝑝)]2
 

𝐺"(𝑧) =
𝜕2

𝜕𝑧2
𝑝

1 − 𝑧 ⋅ (1 − 𝑝)
=
𝜕

𝜕𝑧

𝑝 ⋅ (1 − 𝑝)

[1 − 𝑧 ⋅ (1 − 𝑝)]2
= 𝑝 ⋅ (1 − 𝑝) ⋅ {−2 ⋅ [1 − 𝑧 ⋅ (1 − 𝑝)]−3} ⋅ [−(1 − 𝑝)]

=
2 ⋅ 𝑝 ⋅ (1 − 𝑝)2

[1 − 𝑧 ⋅ (1 − 𝑝)]3

 

Hence 𝐺′(1) =
𝑝(1−𝑝)

[1−(1−𝑝)]2
=

1−𝑝

𝑝
, and 𝐺"(1) =

2⋅𝑝⋅(1−𝑝)2

[1−(1−𝑝)]3
=

2⋅(1−𝑝)2

𝑝2
 

From these, we obtain: 

𝜎2 = 𝐺"(1) + 𝐺′(1) − 𝐺′(1)2

=
2 ⋅ (1 − 𝑝)2

𝑝2
+
1 − 𝑝

𝑝
− (

1 − 𝑝

𝑝
)
2

=
2(1 − 𝑝)2 + 𝑝 ⋅ (1 − 𝑝) − (1 − 𝑝)2

𝑝2

=
1 − 𝑝

𝑝2

 

4.2 Continuous distributions 

We now move to defining the most important continuous distributions. 

4.2.1 Uniform distribution 

A continuous RV is said to be uniformly distributed if its PDF is constant over an interval [𝑎, 𝑏], 

i.e.  

𝑓(𝑥) = {
1

𝑏 − 𝑎
𝑎 ≤ 𝑥 ≤ 𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

And we write 𝑋~𝑈(𝑎, 𝑏). 
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Uniform RVs model the case when there is no particular preference for one value or another within 

an interval (or within a set, for the discrete version of the uniform variable). As far as the mean value 

and the variance are concerned, we have the following: 

𝐸[𝑋] = ∫
1

𝑏 − 𝑎
⋅ 𝑥 ⋅ 𝑑𝑥

𝑏

𝑎

=
1

𝑏 − 𝑎
⋅ [
1

2
𝑥2]

𝑎

𝑏

=
1

𝑏 − 𝑎
⋅ (
1

2
𝑏2 −

1

2
𝑎2) =

1

2
(𝑏 + 𝑎) 

In other words, the mean value is the middle point of the interval, which is what we could expect 

by symmetry. As for the variance, we have: 

𝐸[𝑋2] = ∫
1

𝑏 − 𝑎
⋅ 𝑥2 ⋅ 𝑑𝑥

𝑏

𝑎

=
1

𝑏 − 𝑎
⋅ [
1

3
𝑥3]

𝑎

𝑏

=
1

𝑏 − 𝑎
⋅ (
1

3
𝑏3 −

1

3
𝑎3) =

1

3
(𝑏2 + 𝑎𝑏 + 𝑎2) 

Hence: 

𝑽𝒂𝒓(𝑿) = 𝑬[𝑿𝟐] − 𝝁𝟐 =
𝟏

𝟑
(𝒃𝟐 + 𝒂𝒃 + 𝒂𝟐) −

𝟏

𝟒
(𝒃 + 𝒂)𝟐 =

(𝒃 − 𝒂)𝟐

𝟏𝟐
 

It is also easy to compute the CDF of a uniform variable: 

𝐹(𝑥) = ∫
1

𝑏−𝑎
𝑑𝑥

𝑥

𝑎
=

𝑥−𝑎

𝑏−𝑎
 (if 𝑎 ≤ 𝑥 ≤ 𝑏). 

4.2.2 Exponential distribution 

A continuous RV is said to be (negative) exponential with a rate 𝜆 > 0 if it has the following PDF: 

𝑓(𝑥) = {𝜆𝑒
−𝜆𝑥 𝑥 ≥ 0

0 𝑥 < 0
 

One can easily get the CDF by integration: 

𝐹(𝑥) = ∫ 𝜆 ⋅ 𝑒−𝜆𝑦𝑑𝑦
𝑥

0
= 𝜆 [−

1

𝜆
⋅ 𝑒−𝜆𝑦]

0

𝑥

= 1 − 𝑒−𝜆𝑥 (for 𝑥 ≥ 0, of course). 

The CDF approaches one asymptotically.  



Notes on probability theory (student version) – Giovanni Stea – last saved 16/10/2022 15:07:00 

72 

 

 

This means that the exponential variable can assume arbitrarily large values with some non-null 

probability. Exponential RVs are good models of the amount of time between events that occur at 

random (e.g., earthquakes, failures, etc.). 

In order to compute the expectation and the variance, we need to solve integrals by parts. They are 

quite boring, so we will just skip the computations. There is a quicker way around them, which we 

will see later on. 

𝐸[𝑋] = ∫ 𝑥 ⋅ 𝜆 ⋅ 𝑒−𝜆𝑥 ⋅ 𝑑𝑥
+∞

0
=

1

𝜆
, 𝐸[𝑋2] = ∫ 𝑥2 ⋅ 𝜆 ⋅ 𝑒−𝜆𝑥 ⋅ 𝑑𝑥

+∞

0
=

2

𝜆2
 

Hence 

𝑉𝑎𝑟(𝑋) =
1

𝜆2
 

Two important characteristics of the exponential RV are: 

 

Given n independent exponential RVs 𝑋1, . . . , 𝑋𝑛 , whose rates are 𝜆1, . . . , 𝜆𝑛 , the RV 𝑌 =

𝑚𝑖𝑛{𝑋1, 𝑋2, . . . 𝑋𝑛} is itself exponential with a rate  𝜆 = ∑ 𝜆𝑖
𝑛
𝑖=1 . 

 

Proof 

Trivially,   

𝑃{𝑌 > 𝑎} = 𝑃{min{𝑋1, 𝑋2, . . . 𝑋𝑛} > 𝑎}

= 𝑃{𝑋1 > 𝑎, . . . , 𝑋𝑛 > 𝑎}

=∏𝑒−𝜆𝑖𝑎
𝑛

𝑖=1

= 𝑒−∑ 𝜆𝑖
𝑛
𝑖=1 𝑎

 

Then, 𝐹𝑌(𝑎) = 1 − 𝑒−∑ 𝜆𝑖
𝑛
𝑖=1 𝑎.  

Note that the same does not hold for the maximum. 
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The above property mirrors something that we already learned from an exercise time ago. If we take 

a large number of independent exponential RVs, their minimum will be distributed more and more 

as a step function in zero. We know this to be true whatever the distribution, but in the case of the 

exponential we can appreciate it because this is exactly what happens when 𝜆 → +∞. 

 

Example 

Given the system below (in series), the lifetimes of its components are independent exponential RVs, 

with a rate 𝜆𝑖. Compute the probability that the system globally works. 

S1 S2 S3

 

Solution 

A series system works only if all its components work. Therefore, the first component to break also 

halts the system. Thus,  

𝑃{system works at time 𝑡} = 𝑃{𝑋1 > 𝑡, 𝑋2 > 𝑡, 𝑋3 > 𝑡}

= 𝑃{min(𝑋𝑖) > 𝑡}

= 1 − 𝐹min(𝑡)

= 𝑒−(𝜆1+𝜆2+𝜆3)𝑡

 

 

 

Perhaps the most important property (especially given that about half of the course relies on it) is the 

memoryless property, which can be stated as follows.  

If X is an exponential RV,  

𝑃{𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡} = 𝑃{𝑋 > 𝑠} 

Let us put this into context using a simple example. Assume that you want to know whether a device, 

that has already worked for t hours, will work for s more hours. Assume that its lifetime is an expo-

nentially distributed variable. The memoryless property states that the answer is independent of how 

long in the past the device has worked. 

Let us prove it formally: 

𝑃{𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡} =
𝑃{𝑋 > 𝑠 + 𝑡, 𝑋 > 𝑡}

𝑃{𝑋 > 𝑡}

=
𝑃{𝑋 > 𝑠 + 𝑡}

𝑃{𝑋 > 𝑡}

=
𝑒−𝜆(𝑠+𝑡)

𝑒−𝜆𝑡

= 𝑒−𝜆𝑠
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Example 

The interarrival time of packets at a network switch is an exponential RV with an average 1 𝜆⁄ = 100 

ms. What is the probability that a packet will arrive later than 50 more ms, given that it hasn’t arrived 

in the past n ms? 

 

Solution 

The solution is straightforward: 𝑃{𝑋 > 50} = 𝑒−
50

100 = 𝑒−
1

2 = 0.604.  

Obviously, if the RV was anything except exponential, then the answer would depend on both the 

expired lifetime and the expected lifetime (and I would need more information to solve the exer-

cise, notably the value of n).  

𝑃{𝑋 > 50 + 𝑛|𝑋 > 𝑛} =
𝑃{𝑋 > 50 + 𝑛}

𝑃{𝑋 > 𝑛}
=
1 − 𝐹(50 + 𝑛)

1 − 𝐹(𝑛)
 

With exponential variables, I don’t need that information. 

 

Let us give a graphical interpretation of the memoryless property.  

 

The area below the blue curve is 1 (by the normalization condition). If you want to compute the 

conditional probability 𝑃{𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡} =
𝑃{𝑋>𝑠+𝑡}

𝑃{𝑋>𝑡}
=

𝑃{𝑋>𝑠}

𝑃{𝑋>0}
, then the ratio of  

- the area to the right of s+t, to 

- the area to the right of t 

Is the same as the ratio of the area to the right of s to the total area below the curve. This means that 

shifting the origin to the right by t and rescaling the y axis accordingly preserves the shape of the 

0

0,2

0,4

0,6

0,8

1

1,2
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exponential PDF. This is true for any value of t: the further you move to the right, the smaller the 

area will be, hence the higher the normalization constant will be as well. This yields the memoryless 

property.  

 

The exponential RV is the only continuous distribution having the memoryless property, much like 

the geometric RV is in the only discrete one. However, the similarity between the two extends further.  

If X is an exponential RV with a rate 𝜆 > 0, then 𝑌 = ⌊𝑋⌋ is geometric with a parameter 𝑝 = 1 − 𝑒−𝜆 

(or, if you prefer, 𝜆 = −ln(1 − 𝑝)). This is evident from the figures as well.  

In fact, we have that: 

𝑝𝑌(𝑘) = 𝑃{𝑌 = 𝑘} = 𝑃{𝑘 ≤ 𝑋 < 𝑘 + 1}

= 𝐹(𝑘 + 1) − 𝐹(𝑘)

= (1 − 𝑒−𝜆(𝑘+1)) − (1 − 𝑒−𝜆𝑘)

= (𝑒−𝜆)
𝑘
⋅ (1 − 𝑒−𝜆)

= (1 − 𝑝)𝑘 ⋅ 𝑝

 

And this is a geometric distribution.  

4.2.3 Laplace-Stieltjes Transform 

The LS transform mirrors the concept of the PGF for continuous, non-negative RVs. Given a PDF 

𝑓(𝑡), it is: 

𝐿(𝑠) = 𝐸[𝑒−𝑠𝑡] = ∫ 𝑒−𝑠𝑡 ⋅ 𝑓(𝑡) ⋅ 𝑑𝑡
+∞

0
, 

With s being a complex variable. The integral converges as long as ℝ(𝑠) ≥ 0. The following proper-

ties are noteworthy: 

- Normalization: 𝐿(0) = 1. 

- Central moments: 𝐸[𝑋𝑘] = (−1)𝑘 ⋅ 𝐿(𝑘)(𝑠)|𝑠=0 . Thus, the mean value is −𝐿′(0), the mean 

squared value is +𝐿"(0), etc.. Therefore, the variance is 𝜎2 = 𝐿"(0) + [𝐿′(0)]2. 

The same two properties already seen for the PGF also hold in this case: 

- univocity: if two RVs X, Y have the same LSTs, then they have the same PDFs and vice versa. This 

means that ∀𝑥,    𝑓𝑋(𝑥) = 𝑓𝑌(𝑥) ⇔ ∀𝑠,    𝐿𝑋(𝑠) = 𝐿𝑌(𝑠). The LST and the PDF retain the same 

amount of information. 

- convolution: if you have n independent RVs (not necessarily identical) 𝑋1, . . . , 𝑋𝑛, and you know 

their LSTs 𝐿1(𝑠), . . . , 𝐿𝑛(𝑠), then you can easily get the LST of their sum as: 

𝐿𝑆(𝑠) = 𝐸[𝑒
−𝑠(𝑋1+...+𝑋𝑛)] = 𝐸[𝑒−𝑠⋅𝑋1 ⋅ 𝑒−𝑠⋅𝑋2 ⋅. . .⋅ 𝑒−𝑠⋅𝑋𝑛]

= 𝐸[𝑒−𝑠⋅𝑋1] ⋅ 𝐸[𝑒−𝑠⋅𝑋2] ⋅. . .⋅ 𝐸[𝑒−𝑠⋅𝑋𝑛]

= 𝐿1(𝑠) ⋅ 𝐿2(𝑠) ⋅. . .⋅ 𝐿𝑛(𝑠)
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That is, you just multiply their LSTs. The middle passage is due to independence, of course. 

 

We compute the LST of the exponential: 

𝐿(𝑠) = 𝐸[𝑒−𝑠𝑡] = ∫ 𝑒−𝑠𝑡 ⋅ 𝜆 ⋅ 𝑒−𝜆𝑡 ⋅ 𝑑𝑡
+∞

0

= 𝜆 ⋅ ∫ 𝑒−(𝑠+𝜆)⋅𝑡 ⋅ 𝑑𝑡
+∞

0

=
𝜆

−(𝑠 + 𝜆)
⋅ [𝑒−(𝑠+𝜆)⋅𝑡]

0

+∞

=
𝜆

𝑠 + 𝜆

 

From this, you readily obtain the mean as: 

𝐿′(𝑠) = −1 ⋅
𝜆

(𝑠+𝜆)2
, 𝐿"(𝑠) = +2 ⋅

𝜆

(𝑠+𝜆)3
, hence  

𝐸[𝑋] = −𝐿′(0) = +1 ⋅
𝜆

(𝜆)2
=

1

𝜆
, 𝐸[𝑋2] = 𝐿"(0) = +2 ⋅

𝜆

(𝜆)3
=

2

𝜆2
 

𝑉𝑎𝑟(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋]2 =
2

𝜆2
− (

1

𝜆
)
2

=
1

𝜆2
. 

This is a lot quicker than integrating by parts, as we would have done otherwise. The LST is particu-

larly useful when you work with exponential distributions and others derived from it (we will en-

counter some more later on in the course).  

4.2.4 Normal distribution 

A Normal or Gaussian distribution is a continuous one, whose PDF is the following: 

𝑓(𝑥) =
1

√2𝜋 ⋅ 𝜎
𝑒
−
(𝑥−𝜇)2

2𝜎2  

With 𝜎 being a positive number. This PDF takes on its maximum value when 𝑥 = 𝜇, and that value 

is equal to: 1 (√2𝜋 ⋅ 𝜎)⁄ ~0.4 𝜎⁄ . It is obviously symmetric around 𝜇, hence the latter is also its 

mean value. Now, the higher 𝜎, the smaller the peak and the heavier the tails (the area below must 

be equal to one in any case). Hence, 𝜎 has something to do with how much values are dispersed 

around the mean. We give for granted (without proving it) that 𝝈𝟐 is the variance.  

The PDF may take on values in (−∞;+∞). The normal PDF is the typical bell-shaped curve. 
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More on the shape of the PDF: the PDF changes concavity twice (since it stretches to infinity in both 

directions and it has a maximum). It is quite interesting to see where the inflection points lie.  

 

Exercise 

Assume 𝜇 = 0. Compute the inflection points for a Normal distribution.  

 

Solution 

These are the points where the second derivative is null. Hence, we solve the following equality: 

𝜕2

𝜕𝑥2
(

1

√2𝜋 ⋅ 𝜎
𝑒
−
𝑥2

2𝜎2) = 0

1

√2𝜋 ⋅ 𝜎
⋅
𝜕2

𝜕𝑥2
(𝑒𝑓(𝑥)) =

1

√2𝜋 ⋅ 𝜎
⋅ (𝑓′′(𝑥) ⋅ 𝑒𝑓(𝑥) + 𝑓′(𝑥)2 ⋅ 𝑒𝑓(𝑥)) =

1

√2𝜋 ⋅ 𝜎
⋅ 𝑒

−
𝑥2

2𝜎2 ⋅ [
−2

2𝜎2
+ (

−2𝑥

2𝜎2
)
2

] =

1

√2𝜋 ⋅ 𝜎
⋅ 𝑒

−
𝑥2

2𝜎2 ⋅
1

𝜎2
⋅ [
𝑥2

𝜎2
− 1]

 

The only possibility is that 𝑥2 = 𝜎2, i.e. 𝑥 = ±𝜎. 

Hence the inflection points are those that are 𝜎 units apart from the mean value. 

 

 

We have assumed that the normal PDF is indeed a PDF. We need to test the normalization condition 

in order to be sure. 
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∫ 𝑓(𝑥) ⋅ 𝑑𝑥
+∞

−∞

= 1

∫
1

√2𝜋 ⋅ 𝜎
𝑒
−
(𝑥−𝜇)2

2𝜎2 ⋅ 𝑑𝑥
+∞

−∞

= 1        [𝑧 = (𝑥 − 𝜇) 𝜎⁄ ,    𝑑𝑧 = 𝑑𝑥 𝜎⁄ ]

1

√2𝜋
∫ 𝑒−

𝑧2

2 ⋅ 𝑑𝑧
+∞

−∞

= 1

1

√2𝜋
∫ 𝑒−

𝑧2

2 ⋅ 𝑑𝑧
+∞

−∞

⋅
1

√2𝜋
∫ 𝑒−

𝑦2

2 ⋅ 𝑑𝑦
+∞

−∞

= 1

1

2𝜋
∫ ∫ 𝑒−

𝑦2+𝑧2

2 ⋅ 𝑑𝑦 ⋅ 𝑑𝑧
+∞

−∞

+∞

−∞

= 1        

 

We switch to polar coordinates (𝜌, 𝜃), with 𝜌[0;+∞)  𝜃[0; 2𝜋) and 𝑧 = 𝜌cos𝜃;     𝑦 = 𝜌sin𝜃. 

Hence 𝜌 = 𝑦2 + 𝑧2, and go on with the computation: 

1

2𝜋
∫ ∫ 𝑒−

𝑦2+𝑧2

2 ⋅ 𝑑𝑦 ⋅ 𝑑𝑧
+∞

−∞

+∞

−∞

=

1

2𝜋
∫ ∫ 𝑒−

𝜌2

2 ⋅ ||

𝜕𝑧

𝜕𝜌

𝜕𝑧

𝜕𝜃
𝜕𝑦

𝜕𝜌

𝜕𝑦

𝜕𝜃

|| 𝑑𝜌 ⋅ 𝑑𝜃
+∞

0

2𝜋

0

=

1

2𝜋
∫ ∫ 𝜌 ⋅ 𝑒−

𝜌2

2 ⋅ 𝑑𝜌 ⋅ 𝑑𝜃
+∞

0

2𝜋

0

=

1

2𝜋
∫ ∫ −(

𝜕

𝜕𝜌
𝑒−

𝜌2

2 ) ⋅ 𝑑𝜌 ⋅ 𝑑𝜃
+∞

0

2𝜋

0

=
1

2𝜋
⋅ 2𝜋 ⋅ [𝑒−

𝜌2

2 ]
0

+∞

= 1

 

It took quite a while, but we are now convinced that the normalization holds.  

 

We now want to address the following problem. Given 𝑋~𝑁(𝜇, 𝜎2), can we compute 𝑃{𝑋 ∈ [𝑎, 𝑏]}? 

The obvious answer is 𝐹(𝑏) − 𝐹(𝑎), to compute which we need the CDF 𝐹(𝑥). Unfortunately, there 

is no closed-form CDF for the normal distribution. There is simply no known  function whose 

derivative is 𝑓(𝑥). We can only do the computation numerically.   

Now, this would imply that – theoretically speaking – we would need a very large amount of infor-

mation (say, a lot of points on the x axis) for any couple of values (𝝁, 𝝈𝟐).  

Thanks to some obvious symmetries, however, we can limit our computations to a single couple of 

parameter values (𝝁 = 𝟎, 𝝈𝟐 = 𝟏). A normal distribution with 𝜇 = 0, 𝜎2 = 1 is called a standard 

Normal variable, denoted as 𝑁(0,1). 

Suppose I want to compute 𝑃{𝑋 ≤ 𝑎} = 𝐹(𝑎), with 𝑋~𝑁(𝜇, 𝜎2). I should be able to solve the fol-

lowing integral: 
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𝐹(𝑎) = ∫
1

√2𝜋 ⋅ 𝜎
𝑒
−
(𝑥−𝜇)2

2𝜎2 ⋅ 𝑑𝑥
𝑎

−∞

        [set𝑧 =
𝑥 − 𝜇

𝜎
]

=
1

√2𝜋 ⋅ 𝜎
∫ 𝜎 ⋅ 𝑒−

𝑧2

2 ⋅ 𝑑𝑧

𝑎−𝜇
𝜎

−∞

= Φ(
𝑎 − 𝜇

𝜎
)

 

Where Φ(𝑧) is the CDF of a standard normal distribution, i.e. 𝒁~𝑵(𝟎, 𝟏). 

This means that I can  

a) Compute numerically (and write down on a table) a good, fine-grained set of values for Φ(𝑧) 

b) Every time I need to compute 𝑃{𝑋 ≤ 𝑎}, with 𝑋~𝑁(𝜇, 𝜎2), I just look up 𝚽(
𝒂−𝝁

𝝈
). 

Hence, I only need one table for every possible sets of values (𝜇, 𝜎2). 

Moreover, function Φ(𝑧) is such that: 

- Φ(0) = 1 2⁄   (by obvious symmetry) 

- Φ(−𝑎) = 𝑃{𝑍 ≤ −𝑎} = 𝑃{𝑍 ≥ 𝑎} = 1 − Φ(𝑎) 

Hence, you only need to tabulate the values of Φ(𝑧) for positive values of z, since we can obtain the 

missing values by symmetry. You can find Φ(𝑧) in the appendix of every probability theory textbook 

(as well as on the Internet, of course, and at the end of these notes). 

 

The interesting thing about the normal is that it declines very steeply. Only 4.5% of the values are 

more than 2 standard deviations away from the mean, and as few as 0.3% are more than 3 standard 
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deviations away. This means that we can limit ourselves to tabulating a 𝒁~𝑵(𝟎, 𝟏) in (𝟎; 𝟓] for 

most practical applications. This observation can be substantiated by looking a log-log plot of the 

right tail of the standard normal. We plot function 1 − 𝜙(𝑥), which is the “complementary” CDF 

function, as a function of x, i.e. the number of standard deviations away from the mean. The graph 

below shows that the right tail decays very fast. For every order of magnitude of increase in x, the 

residual probability decreases by several orders of magnitude, and it decreases faster the more you 

go to the right.  

 

 

This means that phenomena that are modeled as Normal RVs have a well-defined scale. You can 

measure things with a ruler whose length is the standard deviation 𝜎, and the probability of encoun-

tering values which are more than a bunch of 𝜎𝑠 away from the mean is negligible. Out-of-scale 

values are vanishingly unlikely with Normal RVs. 

 

Exercise 

A binary message traverses a channel affected by a standard normal noise. To make the transmission 

more robust, we: 

1) Transmit either +2 or -2 (instead of 1 and 0) 

2) Decode “1” if the received signal is above 0.5, and “0” if below. 

Compute the (conditional) error probabilities for either transmission. 

 

Solution 

Call 𝑅 the noise. It is 𝑅~𝑁(0,1). 

1,E-12

1,E-10

1,E-08

1,E-06

1,E-04

1,E-02

1,E+00

0,1 1 10

log-log plot of 1-F(x)
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𝑃{𝑒𝑟𝑟𝑜𝑟|1} = 𝑃{𝑅 + 2 < 0.5}

= 𝑃{𝑅 < −1.5}

= 𝑃{𝑅 > 1.5}

= 1 − Φ(1.5)
= 0.0668

 

 

𝑃{𝑒𝑟𝑟𝑜𝑟|0} = 𝑃{𝑅 − 2 > 0.5}

= 𝑃{𝑅 > 2.5}

= 1 − Φ(2.5)
= 0.0062

 

 

 

Exercise 

The power dissipated in a resistor is 𝑊 = 𝑐𝑉2 , with V being the tension. Assume that 𝑐 = 3 , 

𝑉~𝑁(6,1). Compute 𝐸[𝑊] and 𝑃{𝑊 > 120}. 

 

Solution 

𝐸[𝑊] = 𝐸[3𝑉2] = 3𝐸[𝑉2] = 3[𝑉𝑎𝑟(𝑉) + 𝜇𝑉
2] = 3[𝜎2 + 𝜇𝑉

2] = 3[1 + 36] = 111 

𝑃{𝑊 > 120} = 𝑃{3𝑉2 > 120} = 𝑃{𝑉 > 2√10} + 𝑃{𝑉 < −2√10}. 

Note that −2√10 is around -6, i.e. more than 12 standard deviations away from the mean value. 

Hence, we can safely ignore that probability since it will be negligible. 

However, 𝑉~𝑁(6,1), hence: 

𝑃{𝑉 > 2√10} = 𝑃 {
𝑉−6

1
>

2√10−6

1
} = 𝑃{𝑍 > 0.3246} (with 𝑍~𝑁(0,1)).  

From the tables, I get 𝑃{𝑍 > 0.3246} = 1 − Φ(0.3246) = 0.3727 

 

 

A noticeable property of the normal distribution is the following: 

Given n independent normal RVs 𝑋1, . . . , 𝑋𝑛, RV 𝑌 = ∑ ±𝑋𝑖
𝑛
𝑖=1  is itself normal with parameters 𝜇 =

∑ ±𝜇𝑖
𝑛
𝑖=1 , 𝜎2 = ∑ 𝜎𝑖

2𝑛
𝑖=1  

 

Note that the result for the mean is obvious, and does not require any hypothesis (let alone independ-

ence). The one on the variance is instead due to independence. Thus, the only non-trivial fact about 

this property is the fact that the sum of normals is normal itself.  

 

Exercise 
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Data from the National Oceanic and Atmospheric Administration indicate that the yearly precipitation 

in Los Angeles is a normal random variable with a mean of 12.08 inches and a standard deviation of 

3.1 inches.  

a) Find the probability that the total precipitation during the next 2 years will exceed 25 inches. 

b) Find the probability that next year’s precipitation will exceed that of the following year by 

more than 3 inches. 

Assume that the precipitation totals for the next 2 years are independent. 

 

Solution 

Call 𝑋1, 𝑋2 the precipitation for the next 2 years. Now, 𝑋1 + 𝑋2 is normal with mean 24.16 and vari-

ance 2 ⋅ 3. 12 = 19.22. Hence,  

𝑃{𝑋1 + 𝑋2 > 25} = 𝑃 {
𝑋1 + 𝑋2 − 24.16

√19.22
>
25 − 24.16

√19.22
}

= 𝑃{𝑍 > 0.1916}
= 0.4240

 

b) RV −𝑋2 is normal with a mean equal to -12.08 and the same variance. It follows that 𝑋1 − 𝑋2 is a 

normal RV with mean 0 and variance 19.22. Hence, 

𝑃{𝑋1 − 𝑋2 > 3} = 𝑃 {
𝑋1 − 𝑋2 − 0

√19.22
>

3 − 0

√19.22
}

= 𝑃{𝑍 > 0.6843}
= 0.2469

 

Thus there is a 42.4% chance that the total precipitation in Los Angeles during the next 2 years will 

exceed 25 inches, and there is a 24.69% chance that next year’s precipitation will exceed that of the 

following year by more than 3 inches. 

 

 

Why do people use normal RVs? Because these model phenomena which are indeed common in the 

real world, which occur with large populations. The motivation lies in the following, very important 

theorem (which is often believed to be the single most important result in probability theory).  

4.2.5 Central limit theorem 

Given n iid RVs 𝑿𝒊, having finite mean value 𝜇 and finite variance 𝜎2, whatever their distribution 

(i.e. not necessarily normal), RV 𝑺 = ∑ 𝑿𝒊
𝒏
𝒊=𝟏  has a mean 𝑛 ⋅ 𝜇, a variance 𝑛 ⋅ 𝜎2, and: 

for large values of n (𝒏 ≥ 𝟑𝟎) it is approximately normal 

In other words: 
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𝑷{
∑ 𝑿𝒊
𝒏
𝒊=𝟏 − 𝒏 ⋅ 𝝁

√𝒏 ⋅ 𝝈
≤ 𝒙} ≅ 𝚽(𝒙) 

 

This means that the larger n is, the more similar to a normal RV that sum becomes, whatever the 

distributions of the RVs (as long as they have finite mean and variance). Moreover, if the distribu-

tions are “tame” enough, the sum converges to a normal RV already for small values of n, e.g. 3-4. 

 

The figure above shows that, even with a very skewed PDF, the sum of 3-4 RVs is enough to obtain 

a perfectly normal distribution. 

 

An alternative (but equivalent) formulation of the CLT is the following: 

Define RV 𝑀 = 1 𝑛⁄ ⋅ ∑ 𝑋𝑖
𝑛
𝑖=1  (sample mean). Then 𝐸[𝑀] = 𝜇 , and 𝑉𝑎𝑟(𝑀) = (𝑛 ⋅ 𝜎2) 𝑛2⁄ =

𝜎2 𝑛⁄ , and 𝑀~𝑁(𝜇, 𝜎2 𝑛⁄ ). 

 

This alternative formulation shows that the sample mean of n iid RVs converges to a normal, whose 

mean is the mean of the individual RVs. The variance goes to zero as 𝑛 → ∞. 

 

A sample PDF PDF of the sum, n=2 

PDF of the sum, n=3 PDF of the sum, n=4 
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The central limit theorem can be put to good use, for instance, to approximate binomial distribu-

tions. We know that a binomial RV is the sum of n iid bernoullian RVs. Hence we can apply the CLT 

when n is large.  

In fact, a binomial has a mean value 𝜇 = 𝑛 ⋅ 𝑝 and a variance 𝜎2 = 𝑛 ⋅ 𝑝 ⋅ (1 − 𝑝), and it is approxi-

mately Gaussian if n is large. In practice, this means if 𝑛 ⋅ 𝑝 ⋅ (1 − 𝑝) > 10. In this case, it is: 

𝑃 {
𝑋 − 𝑛 ⋅ 𝑝

√𝑛 ⋅ 𝑝 ⋅ (1 − 𝑝)
≤ 𝑥} ≅ Φ(𝑥) 

Thus, there are two ways to approximate a binomial variable: 

a) When n is large and p is small, you can use a Poisson RV with 𝜆 = 𝑛 ⋅ 𝑝 

b) When 𝑛 ⋅ 𝑝 ⋅ (1 − 𝑝) > 10, you can use a Gaussian with mean 𝜇 = 𝑛 ⋅ 𝑝 and variance 𝜎2 =

𝑛 ⋅ 𝑝 ⋅ (1 − 𝑝). 

 

Exercise 

The ideal size of a first-year class at a college is 150 students. The college, knowing that, on average, 

30% of those accepted will actually attend, uses a policy of approving the applications of 450 stu-

dents. Compute the probability that more than 150 first-year students attend classes at the college. 

 

Solution 

Let 𝑋 denote the number of students that attend; then assuming that each accepted applicant will 

independently attend, it follows that 𝑋 is a binomial RV with 𝑛 = 450, 𝑝 = 0.3.  

First of all, we cannot (in practice) use the binomial distribution to compute that property. In fact, 

450! > 101000, and 𝑝450 is also hard to compute numerically. Hence, we must settle for an approxi-

mated evaluation. Note that we are not in a position to use the Poisson approximation. In fact, p 

is not small enough (nor, probably, n large enough) to do this. However, it is 𝑛 ⋅ 𝑝 ⋅ (1 − 𝑝) = 94.5 ≫

10, hence we expect the Gaussian approximation to be a good one. Call 𝑌 the normal that approxi-

mates the binomial. Since the binomial is a discrete distribution and the normal is a continuous one, 

it is best to compute: 

𝑃{𝑋 = 𝑖} = 𝑃{𝑖 − 0.5 < 𝑌 < 𝑖 + 0.5} 

when applying the normal approximation (this is called the continuity correction). Hence we must 

compute the required probability as:  

𝑃{𝑋 ≥ 151} = 𝑃{151 ≤ 𝑋 ≤ 450} = 𝑃{150.5 < 𝑌 < 450.5} 

Which is equal to: 
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𝑃{150.5 < 𝑌 < 450.5} = 𝑃 {
150.5−450⋅0.3

√450⋅0.3⋅(1−0.3)
<

𝑌−450⋅0.3

√450⋅0.3⋅(1−0.3)
<

450.5−450⋅0.3

√450⋅0.3⋅(1−0.3)
}

= 𝑃{1.59 < 𝑍 < 32.5} = 1 − Φ(1.59)
= 0.06

Hence, only 6% of 

the time do more than 150 of the first 450 accepted actually attend. This may seem surprising. Note, 

however, that  

- The mean value is 𝜇 = 𝑛 ⋅ 𝑝 = 135 

- The standard deviation is 𝜎 = √𝑛 ⋅ 𝑝 ⋅ (1 − 𝑝) ≅ 9.72. 

Thus, 150 students are 1.5  𝝈 away from the mean, which is quite a long way for a normal RV. 

Finally, note that the exact binomial value is 0.0566, quite near the mark (barring numerical errors). 

If we had used a Poisson approximation, instead, we would have got 𝑃{𝑋 > 150} = 0.093, which is 

instead far off the mark, and possibly subject to numerical errors as well.  

 

 

Note, once again, that the assumption of finite mean and variance is paramount. There are distribu-

tions whose variance is infinite (Pareto, log-normal, sometimes Weibull, Cauchy are some), and the 

CLT does not work with them. These distributions are collectively known as “heavy-tail”, and the 

sum of heavy-tail distributions does not converge to normal. It still converges, but to a different 

distribution (“stable” distributions). The normal is the (one and only) stable distribution for light-

tailed RVs. 

4.2.6 Percentiles 

We define a (1 − 𝛼)  percentile 𝑧𝛼  as the value for which 𝑃{𝑋 > 𝑧𝛼} = 𝛼  (or, if you prefer, 

𝑃{𝑋 ≤ 𝑧𝛼} = 1 − 𝛼). For instance, 𝑧0.01 is that value for which the residual tail of the normal distri-

bution (i.e. the one to the right of 𝑧0.01) has an area of 0.01.  

The definition of percentile is not necessarily tied to the Normal random variable. However, you can 

find the percentiles for the standard Normal tabulated in the textbooks.  
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Percentiles are useful in several computations 

- The 0.5 percentile is called median 

- The 0.25 and 0.75 percentiles are called first and third quartiles respectively 

- “High” percentiles are common ways to assess the confidence of a measure, as we will 

see later on.  

Note that the notation used to define percentiles varies among textbooks. In some cases, you might 

find 𝑧0.01 indicated as 𝑧0.99, to underline that the area to its left is 0.99. This is most confusing when 

confidence measures are to be computed. However, we will stick to a consistent notation throughout 

our notes. 

A synonym for percentile is quantile: the 90th percentile 𝑧0.1 is also called the 0.9 quantile. 

4.2.7 Chi-square distribution 

Normal RVs are so important that some RVs which are derived from the normal have been given 

names of their own (since they often arise in practical cases). Assume 𝑍1, . . . 𝑍𝑘  are independent 

standard Normal RVs. Then 𝑋 = 𝑍1
2 + 𝑍2

2+. . . +𝑍𝑘
2 is a chi-square with k degrees of freedom 

𝝌𝒌
𝟐. The expression of the PDF is rather complex and not particularly interesting (you can find it on 

textbooks). The CDF is only known numerically (there are k tables, one per number of degrees of 

freedom). Quite often, you find high percentiles as tabulated values, i.e. those numbers 𝜒𝛼,𝑘
2  such 

that 𝑃{𝑋 > 𝜒𝛼,𝑘
2 } = 𝛼.  

The shape of the PDF is the one in the figure. When 𝑘 = 1,2 it is monotonically decreasing, and then 

it starts exhibiting a peak, which grows to the right as 𝑘 grows large. It is also clear that, for a suitably 

large k, the chi-square approaches a normal RV, because of the CLT (recall that 𝑍1, . . . 𝑍𝑘 are iid). 

For this distribution, it is 𝐸[𝑋] = 𝑘, 𝑉𝑎𝑟(𝑋) = 2𝑘.  
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4.2.8 Student’s T distribution 

Assume that 𝑍~𝑁(0,1), and that 𝜒𝑛
2 is a chi-square with 𝑛 degrees of freedom. Furthermore, assume 

that 𝑍 and 𝜒𝑛
2 are independent. Then, we can define the following RV: 

𝑇𝑛 =
𝑍

√𝜒𝑛2 𝑛⁄
 

And call it a Student’s2 T with 𝒏 degrees of freedom.  

 

As n grows large, 𝜒𝑛
2 𝑛⁄  becomes a constant, equal to its mean value 13. Therefore, the denominator 

of 𝑇𝑛 tends to 1 as well. This means that, for a very large n (e.g., n>30), it is 𝑇𝑛 ≈ 𝑍, i.e. 𝑇𝑛~𝑁(0,1). 

Student’s T distribution tends to the standard Normal when 𝒏 is large. 

 

 

2 Student is not the name of the person who invented it. He was employed for a firm that would not allow him to publish 

scientific results, so he signed his scientific papers using “Student” as a pseudonym. 

3 This is a consequence of the CLT, which is evident from its second formulation. 
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When 𝑛 is above 30, there is really no difference between the two. When 𝑛 < 30, the 𝑇 distribution 

tends to have a less pronounced peak and heavier tails than a standard normal. 

 

In any case, we have 𝐸[𝑇𝑛] = 0, 𝑉𝑎𝑟(𝑇𝑛) = 𝑛 (𝑛 − 2)⁄ , which is slightly larger than one for a large 

n. This last result confirms that 𝑇𝑛~𝑁(0,1) when n is large.  

You can find a Student’s T tabulated in the textbooks. Notably, you can find high percentiles 𝒕𝜶,𝒏, 

which are the values of practical use.  In fact, the value 𝑡𝛼,𝑛 such that 𝑃{𝑇𝑛 ≥ 𝑡𝛼,𝑛} = 𝛼 is a number 

that decreases with n, and it is in general an upper bound on the percentile 𝑧𝛼 of the standard nor-

mal. In fact, the area below the tails tend to reduce as n grows large.  

Student’s 𝑇 distribution is often used to assess the confidence of some measure. We will come back 

to this later on in the course. 

4.3 Heavy-tailed distributions 

What is a heavy tail? It is a (right) tail that decays slower than an exponential. The main conse-

quence is that “very large” values (with respect to the mean) are still unlikely, but not vanishingly 

unlikely.  

 

The most common definition of Heavy Tail (HT) is the following: 

∀𝜆 > 0,    lim
𝑥→∞

𝑒𝜆𝑥 ⋅ (1 − 𝐹(𝑥)) = ∞ 

That definition is not univocous, however. Some people intend slightly different things then they use 

HT, and there are similar classes of RVs which are almost (but not quite) overlapping. These are 

“long tail” and “subexponential”, and it is 𝑆𝑢𝑏𝐸𝑥 ⊂ 𝐿𝑜𝑛𝑔𝑇 ⊂ 𝐻𝑇. However, most HT RVs that are 

of practical use are also SubEx, therefore, we will use the collective name HT and forget about the 

nuances.  

Here is an example, which we have already encountered. This is a Pareto distribution: 

𝑓(𝑥) = {
0 𝑥 ≤ 100
100

𝑥2
𝑥 > 100
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In this case, we have:  

𝐹(𝑥) = ∫
100

𝑦2
𝑑𝑦

𝑥

100

= [
−100

𝑦
]
100

𝑥

= [1 −
100

𝑥
] ⋅ 1{𝑥≥100} 

However, lim
𝑥→∞

𝑒𝜆𝑥 ⋅
100

𝑥
= ∞, hence this distribution is heavy-tailed. 

In fact, one can divide the world of distributions into two categories: light-tailed and heavy-tailed 

distributions. The divide is in fact the exponential distribution. Distributions that decay faster than 

the exponential (e.g., the Normal one) are light-tailed, and those that decay slower than the exponen-

tial are HT. 

HT distributions are just everywhere, and they are often misunderstood. It is as if humans “want” 

things to be Normal4, marvel that – more often than they expect – they are not, and keep thinking in 

Normal terms nonetheless, even when they know it to be wrong, sometimes to the price of huge, 

costly mistakes. A possible explanation for this is that the human brain evolved over millions of years 

the ability to guess the odds of physical fenomena, which are often Normal(ish). However, informa-

tional and social phenomena – which have appeared only very recently in evolutionary time – often 

give rise to heavy-tailed distributions.  

 

One of the main reasons why HT RVs tend to appear quite often is that they are the natural outcome 

of multiplicative processes. If you sum up iid light-tailed RVs, you get a Normal. If instead you 

multiply iid light-tailed RVs, you get a HT RVs. You get a multiplicative process whenever some-

thing grows proportionally to its size, instead of growing by fixed increments (which would yield 

an additive process). Interest rates are multiplicative. Population size grows multiplicatively. Multi-

plicative processes are everywhere.  

Intuitively, this statement makes sense. Take 𝑋1, 𝑋2, … 𝑋𝑛, IID RVs, and define 𝑌𝑖 = 𝑙𝑜𝑔𝑋𝑖. Then RV 

𝑍 = ∏𝑋𝑖 is such that 𝑙𝑜𝑔𝑍 = ∑ 𝑙𝑜𝑔𝑋𝑖 = ∑𝑌𝑖. However, ∑𝑌𝑖 is Normal (by the CLT, as long as 𝑌𝑖 

have finite variance), hence 𝑙𝑜𝑔𝑍 is Normal. This means that 𝑍 is a lognormal distribution. i.e. one 

whose log is a Normal. Lognormal distributions are HT.  

 

 

4 This seems to be implicit in the name. If you name a distribution “Normal”, you expect it to occur as a default case, and 

assume that every other distribution should be an exception, and as such require ad hoc explanations. This is plainly 

wrong, of course.  
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Another common phenomenon that gives rise to HT is preferential attachment (or “rich get richer” 

principle). Consider a set of YouTube videos. Some may be more popular than others, which is re-

flected in their number of views. If a video is popular, those who watch it will recommend it to others. 

Therefore, the probability that a new YouTube user watches one video is skewed in favor or popular 

videos. New users attach preferentially to videos with high viewcounts. The probability that a new 

user will “attach to” (i.e., select) a video is proportional to its viewcount. This means that popular 

videos will get even more popular, and this generates a distribution of viewcounts which is HT. Some 

videos will have a viewcount which is out of scale w.r.t. the mean number of views. The number of 

views per YouTube video is in the thousands, whereas top videos have billions of views (i.e., 106 as 

many as the mean).   

Preferential attachment explains the HT distribution of many phenomena, such as: 

- Internet connectivity: the number of connections of an Autonomous System is typically 

HT. If you are a new Internet Service Provider, and you want to select a good backbone 

provider, you are more likely to choose a well-connected one. 

- The size of cities: The more people live in a city, the better the opportunities and services 

are likely to be. This attracts even more people.  

- The income distribution in a free-market society. The more money you have, the more 

you can invest into making more money. Since investment returns are multiplicative, you 

will get higher returns, and the phenomenon is self-sustaining.  

 

Several quantities related to Computer Engineering follow HT distributions: 

- The lifetime of Unix processes.  

- The number of packets in IP flows (the so-called “mice and elephants” phenomenon) 

- Again, Internet inter-AS connectivity. 

- Social-network phenomena (e.g., Twitter followers) 

 

Example: Pareto distribution: 

𝐹(𝑥) = 1 − (
𝑥𝑚
𝑥
)
𝛼

,    𝑓(𝑥) =
𝑥𝑚 ∙ 𝛼 

𝑥𝛼+1
 

With 𝑥𝑚 > 0, 𝛼 > 0, 𝑥 ∈ [𝑥𝑚; +∞]. 

When 𝛼 ≤ 2, the variance is infinite. When 𝛼 ≤ 1, the mean is infinite too.  

 

HT distributions have some peculiar characteristics, which set them apart from light-tailed ones like 

the Normal.  
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Memory property. Assume that the RV models the time at which some event is supposed to happen.  

- For exponential RVs, it is 𝑃{𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡} = 𝑃{𝑋 > 𝑠}. This means that the fact that 

you have waited for some time is completely irrelevant.  

- For light-tailed RVs (e.g., a Normal), it is 𝑃{𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡} < 𝑃{𝑋 > 𝑠}. The more 

you have waited, the less likely it is that you will have to wait more. Events that are over-

due become more likely as time passes. 

- For HT RVs, it is 𝑃{𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡} > 𝑃{𝑋 > 𝑠}. If you have waited for long, chances 

are you will wait for longer still. Events that are overdue become less likely as time passes.  

 

Let us check the memory property with a Pareto distribution: 

𝑃{𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡} =
𝑃{𝑋 > 𝑠 + 𝑡}

𝑃{𝑋 > 𝑡}
=
(𝑥𝑚
𝑠+𝑡
)
𝛼

(𝑥𝑚
𝑡
)
𝛼 = (

𝑡

𝑠 + 𝑡
)
𝛼

 

When 𝑡 is large (i.e., you have waited for long), the above expression tends to 1 (hence the memory 

property will always hold for a large 𝑡). If something is out of scale, it will be so big time.  

Human schedules sometimes follow HT distributions. If a project which was supposed to complete 

in 2 years hasn’t finished in 4, it is likely to go on forever. Counting on it to be over soon just because 

it is overdue is probably not the smartest thing to do. It would be in a Normal setting, but human 

schedules are not Normal. 

 

Conspiracy vs. catastrophe. If you have a very large value for the sum of RVs, with light-tailed 

RVs, this is likely to be due to a “conspiracy”: all the RV have a similar, large value. With heavy-

tailed ones, it is probably due to a “catastrophe”, i.e. one of the RVs has a value comparable to the 

total, and the other are irrelevant.  

Take the following example: if I tell you that the total height of a group of 10 people is an exceptional 

20 meters, you will probably think of a basketball team, where everyone is around 2 meters tall (i.e., 

on the right tail of a Normal distribution, since height is normally distributed). If, instead, I tell you 

that the collective wealth of 10 people is an exceptional two billion euros, chances are that there is 

one billionaire and nine small-time earners. The chances that you’ve hit on a group of ten people who 

earn around 200M each are negligible in comparison. In other words, in a sample of many IID RVs, 

the total will be given by a few very large values, whereas the others (the vast majority) will be 

almost irrelevant.  

In numbers, this property can be formulated as: 
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lim
𝑥→∞

𝑃{𝑋1 + 𝑋2 +⋯ ,𝑋𝑛 > 𝑥}

𝑃{max (𝑋1, 𝑋2, … , 𝑋𝑛) > 𝑥}
= 1 

 

Scale-free property. While with light-tailed RVs the mean value is representative of a typical obser-

vation (at least by order of magnitude), it is quite hard to tell what the “typical” scale of a HT RV is, 

since the possible values are likely to span orders of magnitude. Very large values are uncommon, 

but not vanishingly so. It is very unwise to count on some out-of-scale event never to happen, if your 

distribution is HT. 

 

 

4.3.1 Heavy-tail in action: load balancing in an Internet ASs 

It has been observed that the size of TCP flows in an Internet AS is HT. This means that there are 

very many “mice”, insignificant flows which transmit few bytes, and very few “elephants”, huge 

flows that make the bulk of the traffic. 

How can you solve this through load balancing? Given that re-routing a flow has a cost, is this going 

to be costly? 

A cheap and effective load-balancing scheme would be reroute some of the elephants. This would 

be: 

- Effective: by moving one elephant you move a large portion of the traffic in your domain. 

Balancing elephants is the only way to achieve load balancing at all. 

- Cheap: there are very few elephants, so there will be very few rerouting decisions. Most 

of the traffic (i.e., mice) will not be affected. 
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How do you mark a flow for rerouting? i.e., how do you identify a (future) elephant? You can’t, 

unless you have clairvoyance. That is because you cannot foresee how many more packets a flow 

will send before stopping.  

However, you can rely on the memory principle: if something looks unusually large, chances are 

that it will be very large. Therefore, you can set (empirically) a threshold after which flows are likely 

to be elephants. If you set that threshold carefully, you will achieve near-perfect load balancing at a 

very low cost. 

 

Could you have done the same if flow sizes were Normal, instead? The answer is no. You would need 

to move a lot of flows in order to balance your load, and the cost would be too high.  
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5 Review problems 

5.1 Problem 1 – Roulette 

A roulette wheel has 38 slots, numbered 0, 00, and 1 through 36. If you bet 1 on a specified number, 

you either win 35 if the roulette ball lands on that number or lose 1 if it does not. If you continually 

make such bets, approximate the probability that  

a) you are gaining money after 34 bets; 

b) you are gaining money after 1,000 bets; 

c) you are gaining money after 100,000 bets. 

Assume that each roll of the roulette ball is equally likely to land on any of the 38 numbers. 

Note that “gaining money after x bets” means that you have strictly more money than you started 

with.  

5.1.1 Solution 

First of all, what do you expect will happen as the number of bets increases? To answer this question, 

one should compare the odds of winning and the related payoff. Now, on every bet, your winning 

probability is 1/38, and the odds are 35:1. In the long run, you will win once every 38 games, and get 

35 times your bet. This means that the more you play, the more you lose, on average. Thus, we would 

expect that the probability is going to be smaller from a) to c).  

How do we solve this? This is an exercise that deals with repeated trials in independent conditions, 

which makes you think of binomial variables. However, although the three bullets require the same 

computation, they are very different settings, particularly as the number of trials is concerned. This 

means that we may want to try different approximations of a binomial distribution as we scale upward 

in the number of trials. 

 

The success probability is always 𝑝 = 1 38⁄ . Let’s see what happens in the three cases: 

a) since you win 35 times your bet, you are gaining if you have won at least once in the whole run of 

34 bets. Therefore, we must compute the probability of at least one success in N=34 independent 

trials. This is equal to: 
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𝑝𝑔𝑎𝑖𝑛 = 𝑃{𝑘 > 0}

= 1 − 𝑃{𝑘 = 0}

= 1 − [(
𝑁
0
) 𝑝0 ⋅ (1 − 𝑝)𝑁−0]

= 1 − (
37

38
)
34

= 0.596

 

Note that, for any number of bets n from 1 to 35, you have the following expression: 

𝑝𝑔𝑎𝑖𝑛(𝑛) = 1 − (
37

38
)
𝑛

    1 ≤ 𝑛 ≤ 34 

where 𝑝𝑔𝑎𝑖𝑛(𝑛) is the probability of gaining after j bets.  𝑝𝑔𝑎𝑖𝑛(𝑛) increases with j, which means that 

you should keep playing if you want to maximize your chance of winning. This is apparently in 

contrast with our earlier intuitive notion that the more you play, the more you lose. How do we rec-

oncile the two? 

What happens at the 36th bet? It happens that winning once is not enough anymore in order for you 

to be gaining. You need to win at least twice, until the 71th bet included. This means that, for 36 ≤

𝑛 ≤ 71,  

𝑝𝑔𝑎𝑖𝑛(𝑛) = 𝑃{𝑘 > 1}

= 1 − 𝑃{𝑘 = 0} − 𝑃{𝑘 = 1}

= 1 − [(
𝑛
0
)𝑝0 ⋅ (1 − 𝑝)𝑛−0] − [(

𝑛
1
)𝑝1 ⋅ (1 − 𝑝)𝑛−1]

= 1 − (
37

38
)
𝑛

− 𝑛 ⋅
1

38
⋅ (
37

38
)
𝑛−1

= 1 − [(
37

38
)
𝑛

+
𝑛

37
⋅ (
37

38
)
𝑛

]

= 1 − (1 +
𝑛

37
) ⋅ (

37

38
)
𝑛

 

And this is still an increasing function of n in 36 ≤ 𝑛 ≤ 71 . It is 𝑝𝑔𝑎𝑖𝑛(36) = 0.234 , and 

𝑝𝑔𝑎𝑖𝑛(71) = 0.545. 

This means that, again, you increase the chances to end up winning, but these chances are peaking 

towards a smaller peak. If you bet for the 72th time, you will need to win at least three times, and so 

on and so forth, and the chances to end up winning will increase towards a peak that gets smaller and 

smaller. This means that, in the end, you are just increasing the chances that you will lose, consistently 

with what we were suggesting based on intuition.  
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b) In N bets, you end up gaining if: 

𝑛𝑤𝑖𝑛 >
𝑛𝑙𝑜𝑠𝑠
35

=
𝑁 − 𝑛𝑤𝑖𝑛

35

𝑛𝑤𝑖𝑛 >
𝑁

36

 

This means that you need at least 𝑛𝑤𝑖𝑛 = ⌊
𝑁

36
⌋ + 1, which in our two cases is 𝑛𝑤𝑖𝑛 = 28 and 𝑛𝑤𝑖𝑛 =

2778 respectively. It is risky (at the very least) to try and compute 𝑃{𝑘 ≥ 𝑛𝑤𝑖𝑛} using binomial for-

mulas, since you have high values of 𝑁 (1000 and 100000, respectively), which imply huge factorials 

and numerical instability. Therefore, approximations are to be used. There are two approximations 

that one may try for binomial variables: 

• the Poisson approximation, which holds if 𝑁  is large and 𝑝  is small. In this case 𝑁 =

1000,100000 and 𝑝 = 1 38⁄ = 0.0263, which means that the conditions are met. A Poisson 

approximation is enforced by setting 𝜆 = 𝑁𝑝 

• the Gaussian approximation, which holds if 𝑁𝑝(1 − 𝑝) > 10 . In our case, 𝑁𝑝(1 − 𝑝) ≈

25.62,    2562, respectively, so we are in a position to use this as well. In the Gaussian ap-

proximation, it is 𝜇 = 𝑁𝑝 and 𝜎2 = 𝑁𝑝(1 − 𝑝)
  
 

 

Among the two, the Gaussian is normally the quickest route, because it does not require summations. 

Let us try both for case b) 

 

Using the Poisson approximation, we set 𝜆 = 𝑁𝑝 ≈ 26.32 and we need to compute the probability 

that a Poisson variable with that mean value is greater than or equal to 𝑁𝑤𝑖𝑛 = 28: 
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𝑃{𝑁𝑤𝑖𝑛 ≥ 28} = 1 −∑ 𝑒−𝜆
27

𝑗=0
⋅
𝜆𝑗

𝑗!
 

This can be easily done with Excel, and yields a result 𝑝𝑔𝑎𝑖𝑛(1000) ≈ 0.397.  

 

To use a Gaussian approximation, which holds by the Central Limit Theorem, you need to set the 

following: 𝜇 = 𝑁 ⋅ 𝑝 = 26.31,    𝜎2 = 𝑁 ⋅ 𝑝 ⋅ (1 − 𝑝) = 25.62 . With these numbers, you need to 

compute 𝑃{𝑁𝑤𝑖𝑛 ≥ 27.5}, with 𝑁𝑤𝑖𝑛~𝑁(𝜇, 𝜎
2). Recall that it should be 27.5 (and not 28), because 

of the so-called “continuity correction”. In this case, we have: 

𝑃{𝑁𝑤𝑖𝑛 ≥ 27.5} = 1 − 𝑃{𝑁𝑤𝑖𝑛 ≤ 27.5}

= 1 − 𝑃 {
𝑁𝑤𝑖𝑛 − 𝜇

𝜎
≤
27.5 − 𝜇

𝜎
}

= 1 −Φ(0.234)
= 0.4052

 

Note that this result is entirely consistent with the one computed using the Poisson approximation. 

 

 

c) 𝑁 = 100000 In this case, we might in principle repeat the above procedure, only to observe that 

the Poisson approximation is itself numerically instable. Therefore, we are only left with the Gaussian 

approximation, which yields the following: 

𝜇 = 𝑁 ⋅ 𝑝 = 2631,    𝜎2 = 𝑁 ⋅ 𝑝 ⋅ (1 − 𝑝) = 2562 

𝑃{𝑁𝑤𝑖𝑛 ≥ 2777.5}, with 𝑁𝑤𝑖𝑛~𝑁(𝜇, 𝜎
2). Note that 𝜎 = √2562 ≈ 50.62. This means that the re-

quired value is almost 3 standard deviations away from the mean, which means that it is very unlikely 

to come out. Putting numbers in, we get: 
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𝑃{𝑁𝑤𝑖𝑛 ≥ 2777.5} = 1 − 𝑃{𝑁𝑤𝑖𝑛 ≤ 2777.5}

= 1 − 𝑃 {
𝑁𝑤𝑖𝑛 − 𝜇

𝜎
≤
2777.5 − 𝜇

𝜎
}

= 1 − Φ(2.88)
= 0.0021

 

This confirms that the probability of winning gets lower the more you play (though not monotonically 

so). 

 

5.2 Problem 2 – Voting 

Consider a state with voter population N. There are two candidates in the state election for governor 

and the winner is chosen based on a simple majority. Let N1 and N2 be the total number of votes 

obtained by candidates 1 and 2, respectively, from voters other than Johnny. Johnny just voted for 

candidate 1, and he would like to know the probability that his vote affects the election results. As-

sume that each other voter (excluding Johnny) votes independently for candidates 1 and 2 with prob-

abilities 𝑝1, 𝑝2, and also that p1 + p2 < 1 to allow for the case that a voter chooses not to vote for either 

candidate. Derive a formula for the probability that Johnny’s vote affects the election results 

5.2.1 Solution 

First of all, what does it mean that Johnny’s vote affects the elections? It may mean that either: 

- 𝑁1 = 𝑁2 (Johnny’s vote makes candidate 1 win the election) 

- 𝑁1 = 𝑁2 − 1 (Johnny’s vote doesn’t allow candidate 2 to win the election, calling it a draw) 

A first step in solving this problem is to compute the following JPDF: 

𝑃{𝑁1 = 𝑗,𝑁2 = 𝑘} = 𝑃{𝑁1 = 𝑗|𝑁2 = 𝑘} ⋅ 𝑃{𝑁2 = 𝑘} 

We have in fact: 

𝑃{𝑁1 = 𝑗|𝑁2 = 𝑘} = (
𝑁 − 1 − 𝑘

𝑗
) 𝑝1

𝑗 ⋅ (1 − 𝑝1 − 𝑝2)
𝑁−1−𝑘−𝑗 

𝑃{𝑁2 = 𝑘} = (
𝑁 − 1
𝑘

) 𝑝2
𝑘 ⋅ (1 − 𝑝2)

𝑁−1−𝑘 

Therefore 

𝑃{𝑁1 = 𝑗, 𝑁2 = 𝑘} = (
𝑁 − 1 − 𝑘

𝑗
) 𝑝1

𝑗 ⋅ (1 − 𝑝1 − 𝑝2)
𝑁−1−𝑘−𝑗 ⋅ (

𝑁 − 1
𝑘

)𝑝2
𝑘 ⋅ (1 − 𝑝2)

𝑁−1−𝑘 

With this result, we can compute the solution as: 

∑ 𝑃{𝑁1 = 𝑘,𝑁2 = 𝑘}

⌊
𝑁−1
2 ⌋

𝑘=0

+ ∑ 𝑃{𝑁1 = 𝑘,𝑁2 = 𝑘+ 1}

⌊
𝑁
2⌋−1

𝑘=0
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5.3 Problem 3 – Student tests 

A student test consists of 𝑁 questions, each one of which has 𝑘 possible answers, among which the 

student is requested to select the only correct one (𝑁, 𝑘 > 0).  

Jack tries his luck by making blind, independent guesses at each question.  

1) Find the expression for the PMF 𝑃𝑛 of the number 𝑛 of correct answers in the whole test 

2) Discuss possible approximations of 𝑃𝑛 when 𝑁 = 80, 𝑘 = 5, and compute an approximated 

value for the probability that Jack answers 40 or more questions correctly. 

3) (For generic N and k values): assume that each correct answer earns Jack +1 points, and each 

wrong answer earns it -1 points. What is the mean value of Jack’s score at the test 𝑠? 

4) What is the score that one should get for a wrong answer, in order for the mean value of 𝑠 to 

be equal to zero? 

 

Now, assume that Jack has some knowledge in the subject matter of the test. He (thinks he) knows 

the answer to 𝑀  questions (0 ≤ 𝑀 ≤ 𝑁 ), which he sets apart in advance and answers to inde-

pendently, and he guesses the remaining 𝑁 −𝑀 ones. When he knows the answer, he has 90% prob-

ability of actually getting the correct answer.  

 

5) Compute the expression of the probability that Jack answers correctly to exactly M questions. 

5.3.1 Solution 

1) This is a repeated trial problem, with a probability of success equal to 𝑝 = 1 𝑘⁄ . The PMF is 

thus the well-known binomial PMF: 

𝑃𝑛 = (
𝑁
𝑛
) 𝑝𝑛 ⋅ (1 − 𝑝)𝑁−𝑛 

2) A binomial can be approximated with: 

a. A Poisson variable, if 𝑁 is large and 𝑝 is small. In this case, 𝑝 = 0.2, hence this ap-

proximation incurs large errors. 

b. A Gaussian variable, if 𝑁 ⋅ 𝑝 ⋅ (1 − 𝑝) > 10 . With 𝑁 = 80 , 𝑘 = 5 , it is 𝑁 ⋅ 𝑝 ⋅

(1 − 𝑝) = 12.8, hence the required condition holds.  

In this case, it is 𝑃𝑛 ≈ 𝑃(𝑛 − 0.5 ≤ 𝑋 ≤ 𝑛 + 0.5), with 𝑋~𝑁(𝑁 ⋅ 𝑝, 𝑁 ⋅ 𝑝 ⋅ (1 − 𝑝)), 

i.e. 𝑋~𝑁(16,12.8). Therefore, we have 𝑃𝑛 ≈ 𝑃 (
𝑛−0.5−16

√12.8
≤

𝑋−16

√12.8
≤

𝑛+0.5−16

√12.8
). 



Notes on probability theory (student version) – Giovanni Stea – last saved 16/10/2022 15:07:00 

100 

 

With 𝑛 = 40, it is  

𝑃{𝑛 ≥ 40} = 1 − Φ(
23.5

√12.8
)

≈ 1 − Φ(6.57)
≈ 0

 

Since notoriously Φ(𝑥) ≈ 0 when 𝑥 ≥ 3. This also makes sense intuitively. Note 

that the answer obtained without approximations is 𝑃{𝑛 ≥ 40} ≅ 2.06 ⋅ 10−9. 

3) The mean score for a question is 1 ⋅ 𝑝 + (−1) ⋅ (1 − 𝑝) = 2𝑝 − 1, and the sum of the means 

is equal to the mean of the sum. Therefore, the mean score for the whole test is 𝐸[𝑠] = 𝑁 ⋅

(2𝑝 − 1). This tells us that the mean test score is negative if the probability of success is less 

than 50% at each question, which makes sense intuitively. 

The same result could be obtained via a considerably longer route as follows: with 𝑛 correct 

answers out of 𝑁, the test score will be 𝑛 − (𝑁 − 𝑛). Thus, the mean value of the score is  

𝐸[𝑠] = ∑ 𝑃𝑛 ⋅ [𝑛 − (𝑁 − 𝑛)]
𝑁
𝑛=0 = 2∑ 𝑛 ⋅ 𝑃𝑛

𝑁
𝑛=0 − 𝑁 ⋅ ∑ 𝑃𝑛

𝑁
𝑛=0 . This can be further devel-

oped as: 

𝐸[𝑠] = 2∑ 𝑛 ⋅ 𝑃𝑛
𝑁

𝑛=0
− 𝑁 ⋅∑ 𝑃𝑛

𝑁

𝑛=0

= 2∑ 𝑛 ⋅ (
𝑁
𝑛
) 𝑝𝑛 ⋅ (1 − 𝑝)𝑁−𝑛

𝑁

𝑛=1
    − 𝑁

= 2∑ 𝑁 ⋅ (
𝑁 − 1
𝑛 − 1

) 𝑝𝑛 ⋅ (1 − 𝑝)𝑁−𝑛
𝑁

𝑛=1
    − 𝑁

= 2𝑁 ⋅ 𝑝 ⋅∑ (
𝑁 − 1
𝑗

) 𝑝𝑗 ⋅ (1 − 𝑝)(𝑁−1)−𝑗
𝑁−1

𝑗=0
    − 𝑁

= 2𝑁 ⋅ 𝑝 − 𝑁

= 𝑁 ⋅ (2𝑝 − 1)

 

4) In order for the mean test score to be null, some test scores must be negative, and this can only 

be obtained if the score for a wrong answer is negative. Assume that a wrong answer gets −𝛿, 

with 𝛿 > 0. The mean test score is null if and only if the mean score of each question is null, 

and this happens if 1 ⋅ 𝑝 + (−𝛿) ⋅ (1 − 𝑝) = 0, i.e. 𝛿 = 𝑝 (1 − 𝑝)⁄ = 1 (𝑘 − 1)⁄ The same 

result could be obtained via the longer route, by observing that the mean test score is: 

𝐸[𝑠] =∑ 𝑃𝑛 ⋅ [𝑛 − (𝑁 − 𝑛) ⋅ 𝛿]
𝑁

𝑛=0
= (1 + 𝛿)∑ 𝑛 ⋅ 𝑃𝑛

𝑁

𝑛=0
− 𝛿𝑁 ⋅∑ 𝑃𝑛

𝑁

𝑛=0
 

Based on the computations of the previous point, one clearly sees that the mean value for the 

test score is: 

𝐸[𝑠] = (1 + 𝛿) ⋅ 𝑁 ⋅ 𝑝 − 𝛿𝑁 = 𝑁 ⋅ [(1 + 𝛿) ⋅ 𝑝 − 𝛿]. 

Now, in order to be 𝐸[𝑠] = 0, we need 𝛿 = 𝑝 (1 − 𝑝)⁄ = 1 (𝑘 − 1)⁄ . 
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5) The probability that Jack gets n correct answers can be written as follows: 

𝑃𝑀′ = ∑𝑃{(𝑀 − 𝑗)correctguesses, 𝑗correct"known"answers}

𝑀

𝑗=0

=∑(𝑃𝑀−𝑗|𝑄𝑗) ⋅ 𝑄𝑗

𝑀

𝑗=0

 

Where 𝑄𝑗 is the probability that Jack gets j correct answers among the M that he thinks he 

knows. Now, it is correct to assume that 𝑃𝑀−𝑗 and 𝑄𝑗 are independent of each other, hence 

the formula is: 

𝑃𝑀′ =∑𝑃𝑀−𝑗 ⋅ 𝑄𝑗

𝑀

𝑗=0

=∑[(
𝑁 −𝑀
𝑀 − 𝑗

) 𝑝(𝑀−𝑗) ⋅ (1 − 𝑝)(𝑁−𝑀)−(𝑀−𝑗)] ⋅ [(
𝑀
𝑗
) 𝑞𝑗 ⋅ (1 − 𝑞)𝑀−𝑗]

𝑀

𝑗=0

= 𝑝𝑀 ⋅ (1 − 𝑝)(𝑁−𝑀) ⋅∑(
𝑁 −𝑀
𝑀 − 𝑗

) ⋅ (
𝑀
𝑗
) ⋅ [(

𝑞

𝑝
)
𝑗

⋅ (
1 − 𝑞

1 − 𝑝
)
𝑀−𝑗

]

𝑀

𝑗=0

 

Where 𝑞 = 0.9 is the probability that Jack answers correctly to a question whose answer he 

thinks he knows. Note that the above summation can start from 𝑗 = max(0,2𝑀 − 𝑁), since 

the first binomial coefficient is null if 𝑗 < 2𝑀 − 𝑁.   

 

5.4 Problem 4 – Independent measures 

Two measurements X and Y are independently drawn from the same distribution with mean 

𝜇 and variance 𝜎2, and a weighted sum 𝑆 = 𝑤𝑋 + (1 − 𝑤) ⋅ 𝑌 is computed, with 0 ≤ 𝑤 ≤ 1.  

1) Find 𝜇𝑆 and 𝜎𝑆
2.  

2) Find the value of 𝑤 that minimizes 𝜎𝑆
2 and the minimum value for 𝜎𝑆

2. Find an intuitive explanation 

for the findings. 

3) Under the hypotheses of point 2), assuming that 𝜇 = 3, 𝜎2 = 8 and that the distribution is sym-

metric around the mean value, compute 𝑃{𝑆 ≤ 7}. 

4) Answer the above question again assuming that X and Y are normal.  

5) Assume now that X and Y are not independent, and that 𝐸[𝑋 ⋅ 𝑌] = 𝜇2 + Δ. Answer again point 1). 

Is it possible that 𝜎𝑆
2 decreases w.r.t. the previous case?  
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5.4.1 Solution 

1) 𝜇𝑆 = 𝐸[𝑆] = 𝐸[𝑤𝑋 + (1 − 𝑤) ⋅ 𝑌] = 𝑤 ⋅ 𝐸[𝑋] + (1 − 𝑤) ⋅ 𝐸[𝑌] = 𝑤 ⋅ 𝜇 + (1 − 𝑤) ⋅ 𝜇 =
𝜇 

Since X and Y are i.i.d.,  

𝑉𝑎𝑟(𝑆) = 𝑉𝑎𝑟(𝑤𝑋 + (1 − 𝑤) ⋅ 𝑌) = 𝑉𝑎𝑟(𝑤𝑋) + 𝑉𝑎𝑟((1 − 𝑤) ⋅ 𝑌) = [𝑤2 + (1 − 𝑤)2] ⋅ 𝜎2

= [2𝑤2 − 2𝑤 + 1] ⋅ 𝜎2
 

2) The required values are the coordinate of the vertex of parabola 𝑦 = 2𝑤2 − 2𝑤 + 1, i.e. 𝑤′ =

1 2⁄ , and 𝑦′ = 1 2⁄ . Hence, the minimum value for 𝜎𝑆
2 is 𝜎2 2⁄ . The intuitive explanation is 

that, when 𝑤′ = 1 2⁄ , 𝑆 is the average of X and Y. By the central limit theorem, the average of 

n i.i.d. random variables has a smaller variance than the individual variables. 

 

3) We have 7 = 𝜇𝑆 + 2𝜎𝑆 . Hence, by Tchebishev’s inequality, it is 𝑃{|𝑆 − 𝜇𝑆| ≥ 𝑘 ⋅ 𝜎𝑆} ≤

1 𝑘2⁄ , with 𝑘 = 2. This means that 𝑃{𝑆 > 7} + 𝑃{𝑆 < −1} = 1 4⁄ . Therefore, since the RV 

is symmetric around the mean value, it is 𝑃{𝑆 > 7} = 1 8⁄ , hence 𝑃{𝑆 ≤ 7} = 7 8⁄ . 

 

4) If X and Y are normal, it is 𝑃{𝑆 ≤ 7}=𝑃{𝑆 ≤ 𝜇𝑆 + 2𝜎𝑆} = 𝑃 {
𝑆−𝜇𝑆

𝜎𝑆
≤ 2} = Φ(2) = 0.9772 

 

5) 𝜇𝑆 stays the same, since the expectation is linear whether RVs are independent or not. The 

variance changes, and it incorporates the covariance between 𝑋 and 𝑌. More specifically, it 

is: 

𝑉𝑎𝑟(𝑆) = 𝑉𝑎𝑟(𝑤𝑋 + (1 − 𝑤) ⋅ 𝑌)

= 𝑉𝑎𝑟(𝑤𝑋) + 𝑉𝑎𝑟((1 − 𝑤) ⋅ 𝑌) + 2 ⋅ 𝐶𝑜𝑣(𝑤𝑋, (1 − 𝑤) ⋅ 𝑌)

= 𝑤2 ⋅ 𝜎2 + (1 − 𝑤)2 ⋅ 𝜎2 + 2 ⋅ 𝑤 ⋅ (1 − 𝑤) ⋅ [𝐸[𝑋 ⋅ 𝑌] − 𝜇2]

= [2𝑤2 − 2𝑤 + 1] ⋅ 𝜎2 + 2 ⋅ 𝑤(1 − 𝑤) ⋅ Δ

 

 

If Δ < 0 (i.e. variables are negatively correlated), then the variance of S is actually smaller. 

This is because a large sample for X will be compensated by a smaller sample for Y and vice 

versa.  

 

5.5 Problem 5 – Switches 

ACME components owns two switch production plants. In plant 1, each unit is defective with prob-

ability 𝑝1 = 10
−5, independently from the others. In plant 2, the mean weekly number of defective 

units is equal to 5. The production of each plant is 𝑛 = 4 ⋅ 105 units per week.   
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1) Compute mean and variance of the number of defective units produced by ACME in a week.  

2) Draw a qualitative plot (with as many details are possible) of the PMF of the number of de-

fective units in a week.  

3) Compute the probability that the weekly number of defective units produced by ACME is 

equal to 5. 

4) Compute the probability that the weekly number of defective units produced by ACME is less 

than 3. 

5) Compute the probability that a randomly chosen unit is defective. 

 

A) B)

 

 

Suppose now that ACME units can be connected in series or in parallel as above, and that the resulting 

system works if there exists a way that connects both extremities traversing only non-defective sys-

tems.  

6) Explain which of the two systems has a higher chance to be functioning. Jusitfy your findings.  

5.5.1 Solution 

1) Given that n is large and p is small, we can approximate the failure probability of each plant 

using a Poisson variable, whose average is 𝜆𝑖 = 𝑛𝑖 ⋅ 𝑝𝑖. Hence, it is 𝜆1 = 4,    𝜆2 = 5. Thus, 

there are on average 9 defective units in a weekly production of 2𝑛 = 8 ⋅ 105 pieces. As for 

the variance, it is all the more reasonable to approximate the whole production using a Poisson 

variable, whose average and variance is equal to 9.  

2) The Poisson variable has a bell shape, with an infinite right tail. It peaks around its mean value, 

which is equal to 9. Hence, the shape is the following: 

 

 

3) The probability that 5 pieces are defective is equal to 𝑝5 = 𝑒−9 ⋅ 95 5!⁄ = 0.060727 

4) The probability that less than 3 pieces are defective is equal to 𝑝0 + 𝑝1 + 𝑝2 = 1.23 ⋅ 10
−3 +

11.1 ⋅ 10−3 + 49.98 ⋅ 10−3 = 62.32 ⋅ 10−3 
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5) The probability is the following:  

𝑝𝑑 = 𝑃{defective}

= 𝑃{defective|plant1} ⋅ 𝑃{plant1} + 𝑃{defective|plant2} ⋅ 𝑃{plant2}

= 10−5 ⋅ 0.5 +
5

4 ⋅ 105
⋅ 0.5

= 1.125 ⋅ 10−5

 

6) System a) works with probability 𝑝𝑎 = 1 − 𝑝𝑑. System b) works with probability  

𝑝𝑏 = 1 − 𝑃{upperbranchfails} ⋅ 𝑃{lowerbranchfails}

= 1 − (1 − (1 − 𝑝𝑑)
2) ⋅ 𝑝𝑑

 

Thus, 𝑝𝑏 > 𝑝𝑎 if and only if  

1 − (1 − (1 − 𝑝𝑑)
2) ⋅ 𝑝𝑑 > 1 − 𝑝𝑑

𝑝𝑑 > (1 − (1 − 𝑝𝑑)
2) ⋅ 𝑝𝑑

1 > 1 − (1 − 𝑝𝑑)
2

𝑝𝑑 < 1

 

which is always true. System b) is always more reliable than system a), no matter what the 

failure probability of a single component is. 

 

5.6 Problem 6 - Dice 

In a dice game, you roll two dice. If you obtain a 2, 3, or 12, you immediately lose. If, instead, you 

obtain a 7 or 11, you immediately win. If you roll a 4, 5, 6, 8, 9, or 10, that becomes your “objective”. 

In this case, you keep rolling the dice until either the “objective” comes up again – in which case you 

win – or until a 7 comes up, in which case you lose.  

 

1. Calculate the probability that you win/lose at the first roll 

2. Calculate the probability that you obtain a 4 at the first roll, and you win/lose at the second 

roll 

3. Generalize the previous result to the case when you win/lose at the n-th roll (n>=2) 

4. Using the previous two results, compute the probability that you win at all 

5. Assume that you can bet 100$ on you winning. Compute the mean value of your payoff 

5.6.1 Solution 

1) Call 𝑃𝑥 = 𝑃{𝑥} 

𝑃{win1st} = 𝑃{7,11} = 𝑃7 + 𝑃11 =
6+2

36
=

8

36
;  

𝑃{lose1st} = 𝑃{2,3,12} = 𝑃2 + 𝑃3 + 𝑃12 =
1 + 2 + 1

36
=
4

36
 



Notes on probability theory (student version) – Giovanni Stea – last saved 16/10/2022 15:07:00 

105 

 

 

2) 𝑃{41st, win2nd} = 𝑃{4,4} = 𝑃4 ⋅ 𝑃{4|4} = 𝑃4 ⋅ 𝑃4 =
3

36
⋅
3

36
=

9

362
 

𝑃{41st, lose2nd} = 𝑃{4,7} = 𝑃4 ⋅ 𝑃{7|4} = 𝑃4 ⋅ 𝑃7 =
3

36
⋅
6

36
=
18

362
 

The last inequalities are due to the fact that subsequent rolls are independent experiments.  

 

3) In order to win (lose) at the n-th roll, you have to obtain a result which is not in {4,7} for n-2 times 

before getting a 4 (7) again.  

𝑃{41st, win𝑛𝑡ℎ} = 𝑃{4, [~(4,7)𝑛−2], 4} = 𝑃4 ⋅ (1 − 𝑃4 − 𝑃7)
𝑛−2 ⋅ 𝑃4 =

3

36
⋅ (
27

36
)
𝑛−2

⋅
3

36
 

𝑃{41st, lose𝑛𝑡ℎ} = 𝑃{4, [~(4,7)𝑛−2], 7} = 𝑃4 ⋅ (1 − 𝑃4 − 𝑃7)
𝑛−2 ⋅ 𝑃7 =

3

36
⋅ (
27

36
)
𝑛−2

⋅
6

36
 

 

4) We straightforwardly obtain: 

𝑃𝑤𝑖𝑛 = 𝑃{win1
st} +∑ ∑ 𝑃𝑥

2 ⋅ (1 − 𝑃𝑥 − 𝑃7)
𝑛−2

𝑥∈{4,5,6,8,9,10}

+∞

𝑛=2

= 𝑃{win1st} +∑ 𝑃𝑥
2 ⋅∑ (1 − 𝑃𝑥 − 𝑃7)

𝑛−2
+∞

𝑛=2𝑥∈{4,5,6,8,9,10}

= 𝑃{win1st} +∑
𝑃𝑥
2

𝑃𝑥 + 𝑃7𝑥∈{4,5,6,8,9,10}

=
8

36
+ 2 ⋅ [

(
3
36)

2

(
3 + 6
36 )

+
(
4
36)

2

(
4 + 6
36 )

+
(
5
36)

2

(
5 + 6
36 )

]

=
8

36
+ 2 ⋅ [

(
9
36)

9
+
(
16
36)

10
+
(
25
36)

11
]

=
2

9
+
1

18
+
4

45
+
25

198

=
244

495
≃ 0.493

 

 

5) The expected payoff is 𝐸[𝑋] = 100 ⋅ 𝑃𝑤𝑖𝑛 − 100 ⋅ (1 − 𝑃𝑤𝑖𝑛) = 100 ⋅ (2𝑃𝑤𝑖𝑛 − 1) = −
700

495
 

5.7 Problem 7 – JPMF from JCDF 

Given the JCDF 𝐹(𝑥𝑖 , 𝑦𝑗) of two discrete RVs X and Y, compute the JPMF 𝑝(𝑥𝑖 , 𝑦𝑗) 

5.7.1 Solution 

Assume that (𝑥, 𝑦) are points on a Cartesian plane, as in the figure.  
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....

....

....

yj

yj-1

xi-1 xi

Ei,j

Fi,j

 

Define 𝐸𝑖,𝑗  the event {𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗}, and 𝐹𝑖,𝑗  the event {𝑋 ≤ 𝑥𝑖, 𝑌 ≤ 𝑦𝑗}. It is straightforward to 

observe that 𝑃(𝐸𝑖,𝑗) = 𝑝(𝑥𝑖 , 𝑦𝑗), and 𝑃(𝐹𝑖,𝑗) = 𝐹(𝑥𝑖 , 𝑦𝑗). 

We straightforwardly obtain: 

𝑃(𝐹𝑖,𝑗) = 𝑃(𝐹𝑖−1,𝑗 ∪ 𝐹𝑖,𝑗−1 ∪ 𝐸𝑖,𝑗) = 𝑃(𝐹𝑖−1,𝑗 ∪ 𝐹𝑖,𝑗−1) + 𝑃(𝐸𝑖,𝑗) 

Where 𝐹𝑖−1,𝑗, 𝐹𝑖,𝑗−1 are the rectangles that terminate one point to the left (or one point below) (𝑥𝑖,𝑦𝑗). 

The last passage is true because 𝐸𝑖,𝑗  and  𝐹𝑖−1,𝑗 ∪ 𝐹𝑖,𝑗−1  are mutually exclusive, i.e.  𝐸𝑖,𝑗 ∩

(𝐹𝑖−1,𝑗 ∪ 𝐹𝑖,𝑗−1) = ∅.  

In order to compute 𝑃(𝐹𝑖−1,𝑗 ∪ 𝐹𝑖,𝑗−1) we need to point out their intersection (the two events are not 

mutually exclusive). Their intersection is in fact 𝐹𝑖−1,𝑗−1, hence: 

𝑃(𝐹𝑖−1,𝑗 ∪ 𝐹𝑖,𝑗−1) = 𝑃(𝐹𝑖−1,𝑗) + (𝐹𝑖,𝑗−1) − 𝑃(𝐹𝑖−1,𝑗𝐹𝑖,𝑗−1)

= 𝑃(𝐹𝑖−1,𝑗) + (𝐹𝑖,𝑗−1) − 𝑃(𝐹𝑖−1,𝑗−1)
 

Now, we have everything we need to do the computations: 

𝑝(𝑥𝑖 , 𝑦𝑗) = 𝑃(𝐸𝑖,𝑗)

= 𝑃(𝐹𝑖,𝑗) − 𝑃(𝐹𝑖−1,𝑗 ∪ 𝐹𝑖,𝑗−1)

= 𝑃(𝐹𝑖,𝑗) − [𝑃(𝐹𝑖,−1𝑗) + 𝑃(𝐹𝑖,𝑗−1) − 𝑃(𝐹𝑖−1,𝑗−1)]

= 𝐹(𝑥𝑖,𝑦𝑗) − [𝐹(𝑥𝑖−1,𝑦𝑗) + 𝐹(𝑥𝑖,𝑦𝑗−1) − 𝐹(𝑥𝑖−1,𝑦𝑗−1)]
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6 Appendix 

6.1 Tables 

TABLE 1 - Standard Normal Distribution Function Φ(𝑥) 
 

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 
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TABLE 2 - Values of 𝑡𝛼,𝑛 

 

n 𝜶 =0.10 𝜶 =0.05 𝜶 =0.025 𝜶 =0.01 𝜶 =0.005 

1 3.078 6.314 12.706 31.821 63.657 

2 1.886 2.920 4.303 6.965 9.925 

3 1.638 2.353 3.182 4.541 5.841 

4 1.533 2.132 2.776 3.474 4.604 

5 1.476 2.015 2.571 3.365 4.032 

6 1.440 1.943 2.447 3.143 3.707 

7 1.415 1.895 2.365 2.998 3.499 

8 1.397 1.860 2.306 2.896 3.355 

9 1.383 1.833 2.262 2.821 3.250 

10 1.372 1.812 2.228 2.764 3.169 

11 1.363 1.796 2.201 2.718 3.106 

12 1.356 1.782 2.179 2.681 3.055 

13 1.350 1.771 2.160 2.650 3.012 

14 1.345 1.761 2.145 2.624 2.977 

15 1.341 1.753 2.131 2.602 2.947 

16 1.337 1.746 2.120 2.583 2.921 

17 1.333 1.740 2.110 2.567 2.898 

18 1.330 1.734 2.101 2.552 2.878 

19 1.328 1.729 2.093 2.539 2.861 

20 1.325 1.725 2.086 2.528 2.845 

21 1.323 1.721 2.080 2.518 2.831 

22 1.321 1.717 2.074 2.508 2.819 

23 1.319 1.714 2.069 2.500 2.807 

24 1.318 1.711 2.064 2.492 2.797 

25 1.316 1.708 2.060 2.485 2.787 

26 1.315 1.706 2.056 2.479 2.779 

27 1.314 1.703 2.052 2.473 2.771 

28 1.313 1.701 2.048 2.467 2.763 

29 1.311 1.699 2.045 2.462 2.756 

∞ 1.282 1.645 1.960 2.326 2.576 
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6.2 Geometric RVs: capacity of data-link protocols 

We can exploit geometric RVs to derive insight about the capacity of two data-link network proto-

cols.  

A data-link network protocol transmit frames over a wire between two endpoints. The usual as-

sumption is that the link is full-duplex, and that we consider only one side of the transmissions (i.e., 

A sending to B). A send data frames to B, which replies with control (acknowledgment) frames. 

Data frames have some control bits, 𝑙𝑐, and some data bits, 𝑙𝑑. Ack frames only have control bits 

𝑙𝑐. Control information is required (back and forth) to understand what is going on, wheras data in-

formation is what A wants to transmit to B. It is safe to expect that 𝑙𝑐 ≪ 𝑙𝑑, otherwise the efficiency 

of the protocol will be low (hampered by the control overhead).  

 

A B

data

ack

 

The capacity of a network protocol is the percentage of time it keeps the transmission line occu-

pied, assuming that A always has something to transmit.   

The following facts will guide our analysis (this is networking 101): 

- Data frames are numbered, and ACK frames carry the number of the data frame they 

acknowledge. 

- A frame (whether data or ACK) can be corrupted on the fly, with a certain frame error 

probability 𝑝 that depends on the transmission medium.  

- When a frame (data or control) is corrupted, its receiver cannot decode it, hence discards 

it and the protocol behaves as if no transmission had occurred at all.  

- When B receives a frame correctly, it sends back an acknowledgement immediately 

- When A receives an acknowledgemnt, it knows that the frame the ACK refers to has been 

received correctly.  

- If either the data or the ACK frame is corrupted, A will not receive an ACK. The two 

cases are indeed different: 

o If the data frame is corrupted, B will not send the ACK back 

o If the data frame is correctly received, but the ACK is corrupted, B will not be 

able to decode the ACK.  

In the first case, the data frame is at B, in the second it is not. However, A has no way of 

distinguishing the two cases, hence it will behave the same, and assume the worst. 



Notes on probability theory (student version) – Giovanni Stea – last saved 16/10/2022 15:07:00 

110 

 

- Since you only get positive feedback (i.e., when you receive an ACK), you can only rely 

on timeout and retransmission at the sender side. In fact, A retransmits frames when no 

ACK is received after a timeout. Unless he medium is irreparably damaged, an ACK will 

make it to A sooner or later, possibly after a certain number of retansmissions.  

 

Call: 

- 𝑡𝑝 the propagation time on either direction (which is the link length divided by the speed of light in 

the medium). 

- 𝐶 the link speed (e.g., bits per second) 

- 𝑡𝑖 = (𝑙𝑐 + 𝑙𝑑) 𝐶⁄  the transmission time of a data frame 

- 𝑡𝑐 = 𝑙𝑐 𝐶⁄  the transmission time of an ACK frame 

- 𝑡𝑡 the maximum “think time” at the receiver B, before it actually sends an ACK back to A. 

We want to see what capacity we get how using different protocol strategies. 

 

The simplest strategy is called stop and wait. The sender sends one frame, waits for the ACK, and 

then goes on like this.  

A

B

1

ACK

1

ti

tp

tt

ta

tp

to

2

to

2

ACK

2

3

 

Since we know all the times involved, A can set the timeout equal to 𝑡𝑜 = 2 ⋅ 𝑡𝑝 + 𝑡𝑡 + 𝑡𝑐.  

We can already foresee that this protocol keeps the medium busy only when 𝑡𝑖 ≫ 𝑡𝑜, since every 

time A transmits a frame, it has to keep idle for 𝑡𝑜 (at best) before transmitting another. In the ab-

sence of errors, in fact, the capacity would be: 

𝜌 =
𝑡𝑖

𝑡𝑖 + 𝑡𝑜
< 1 

After some straightforward computations, we would get: 

𝜌 =
𝑙𝑐 + 𝑙𝑑

(2 ⋅ 𝐶 ⋅ 𝑡𝑝 + 𝐶 ⋅ 𝑡𝑡 + 𝑙𝑐) + (𝑙𝑐 + 𝑙𝑑)
=

1

2 ⋅ 𝐶 ⋅ 𝑡𝑝 + 𝐶 ⋅ 𝑡𝑡 + 𝑙𝑐
𝑙𝑐 + 𝑙𝑑

+ 1
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Hence, the obvious way to maximize the procotol capacity, if we can act on it, is to make data frames 

infinitely long (𝑙𝑑 → ∞).  

Since we do have errors, instead, and errors depend on the frame length (as we will see later on), 

this is not the right thing to do. Assume that 𝑙𝑑 is fixed, and call 𝑝 the probability that there is an 

errore (either in the data or in the ACK frame). Assume subsequent transmissions are independent 

of each other. In this case the right probability model are repeated trials, where (1 − 𝑝) is the suc-

cess probability.  

The transmission time of a frame is a random variable 𝑇, which can be computed as follows: 

- 𝑇 = 𝑡𝑖 + 𝑡𝑜 with probability (1 − 𝑝) 

- 𝑇 = 2 ⋅ (𝑡𝑖 + 𝑡𝑜) with probability 𝑝 ⋅ (1 − 𝑝) 

- 𝑇 = 𝑘 ⋅ (𝑡𝑖 + 𝑡𝑜) with probability 𝑝𝑘−1 ⋅ (1 − 𝑝) (for 𝑘 ≥ 1) 

The capacity of the protocol in this case is: 

𝜌 =
𝑡𝑖

𝐸[𝑇]
. 

Let us compute 𝐸[𝑇]: 

𝐸[𝑇] = ∑𝑘(𝑡𝑖 + 𝑡𝑜)𝑝
𝑘−1(1 − 𝑝)

+∞

𝑘=1

= (𝑡𝑖 + 𝑡𝑜) ⋅ (1 − 𝑝) ⋅ [∑𝑘 ⋅ 𝑝𝑘−1
+∞

𝑘=1

]

= (𝑡𝑖 + 𝑡𝑜) ⋅ (1 − 𝑝) ⋅ [
𝜕

𝜕𝑝
∑𝑝𝑘
+∞

𝑘=1

]

= (𝑡𝑖 + 𝑡𝑜) ⋅ (1 − 𝑝) ⋅ [
𝜕

𝜕𝑝

1

1 − 𝑝
]

= (𝑡𝑖 + 𝑡𝑜) ⋅ (1 − 𝑝) ⋅ [
1

(1 − 𝑝)2
]

=
𝑡𝑖 + 𝑡𝑜
1 − 𝑝

 

Call 𝑎 =
𝑡𝑖+𝑡𝑜

𝑡𝑖
, then it is: 

𝜌 =
𝑡𝑖
𝑎 ⋅ 𝑡𝑖

⋅ (1 − 𝑝) =
1 − 𝑝

𝑎
 

This tells us that the capacity depends on: 

- the error probability: the higher the probability, the lower the capacity, which makes sense 

- the time overhead a: with a null error probability, we get the same result as before. 
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The above computations were made assuming that the sender A is in asymptotic conditions, i.e., it 

always has something to transmit. This is the usual assumption when computing the capacity of a 

protocol.  

 

Let us describe a different data link protocol, called selective repeat: in the latter, A transmits con-

tinuously, without waiting for the ACK of each frame. The receiver ACKs frames as they come. If a 

frame is missing (e.g., 1, 2, 4 arrive, but 3 is missing), then the receiver B either does nothing or sends 

a NACK3 (negative acknowledgement) to signal that 3 is missing. When a frame is in time out (or a 

NACK is received), the sender retransmits that frame only. 

A

B

1

ACK

1

ti

tp

to 1

2 3

ACK

2

4

to 2

to 3

5 3 6 7

ACK

5

ACK

6

ACK

7

ACK

4

ACK

3

 

This requires a more complicated logic at the receiver, because frames may not arrive in sequence 

(with stop-and-wait, they always do).  

We expect this protocol to have a higher capacity than the former. Let us see why: 

The transmission time of a frame is a random variable 𝑇, which can be computed as follows: 

- 𝑇 = 𝑡𝑖 with probability (1 − 𝑝) (compare with the former). 

- 𝑇 = 𝑡𝑖 + (𝑡𝑖 + 𝑡𝑜) with probability 𝑝 ⋅ (1 − 𝑝) 

- 𝑇 = 𝑡𝑖 + 𝑘 ⋅ (𝑡𝑖 + 𝑡𝑜) with probability 𝑝𝑘 ⋅ (1 − 𝑝) (for 𝑘 ≥ 0) 

The capacity of the protocol is still: 

𝜌 =
𝑡𝑖

𝐸[𝑇]
. 

Let us compute 𝐸[𝑇]: 
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𝐸[𝑇] = ∑[𝑡𝑖 + 𝑘(𝑡𝑖 + 𝑡𝑜)]𝑝
𝑘(1 − 𝑝)

+∞

𝑘=0

=∑𝑡𝑖 ⋅ 𝑝
𝑘(1 − 𝑝)

+∞

𝑘=0

+∑𝑘 ⋅ (𝑡𝑖 + 𝑡𝑜)𝑝
𝑘(1 − 𝑝)

+∞

𝑘=0

= 𝑡𝑖 ⋅ (1 − 𝑝)∑𝑝𝑘
+∞

𝑘=0

+ (𝑡𝑖 + 𝑡𝑜)(1 − 𝑝)∑𝑘 ⋅ 𝑝𝑘
+∞

𝑘=0

= 𝑡𝑖 +
𝑝 ⋅ (𝑡𝑖 + 𝑡𝑜)

1 − 𝑝

= 𝑡𝑖 +
𝑝 ⋅ 𝑎 ⋅ 𝑡𝑖
1 − 𝑝

=
1 + 𝑝 ⋅ (𝑎 − 1)

1 − 𝑝
𝑡𝑖

 

Thus, we have: 

𝜌 =
1 − 𝑝

1 + 𝑝 ⋅ (𝑎 − 1)
 

It is clear that the capacity still depends on the error probability. However, it does not depend anymore 

on a the way it did before. Even if a is large, if the error probability is small, then the capacity can 

get close to 1. With stop-and-wait, it could at most get to 1 𝑎⁄ . 

 

So far we have assumed that the transmission time of a frame is constant. We have discussed thtat 

long frames are preferable, since they carry more bit and by doing so the timeout is amortized on 

more information.   

However, the error probability must ultimately depend on the length of the frame itself. So far, both 

were assumed to be constant. Therefore, we can imagine that, the longer the frame (i.e., the higher 𝑙𝑑, 

since 𝑙𝑐 is fixed and imposed by the protocol), the higher p will be.  

 

A frequent model for the frame error probability is one of independent bit errors. Given a bit error 

rate (BER) 𝑝𝑏, i.e. the probability that one bit is corrupted, and assuming that all bits can be corrupted 

independently (which is not strictly true, anyway), the frame error probability is: 

𝑝 = 1 − (1 − 𝑝𝑏)
𝑙𝑐+𝑙𝑑 

There are two contrasting effects at work here, i.e., 

- a higher 𝑙𝑑 brings benefits because it amortizes the control and timeout overhead 

- a higher 𝑙𝑑  increases the error probability, hence makes retransmission more frequent, 

hence it increases 𝐸[𝑇] and ultimately decreases the capacity. 
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As often happens in these cases, there is an optimal frame length, i.e. the one where you achieve the 

maximum throughput.  

 

First let us define the throughput, which is the amount of information per unit of time. One frame is 

transmitted in 𝐸[𝑇] time, hence we get that  

𝜆 =
𝑙𝑑
𝐸[𝑇]

=
𝑙𝑑 ⋅ (1 − 𝑝)

𝑡𝑖 + 𝑝 ⋅ 𝑡𝑜
=

𝑙𝑑 ⋅ (1 − 𝑝)

𝑙𝑐 + 𝑙𝑑
𝐶 + 𝑝 ⋅ 𝑡𝑜

=
𝑙𝑑 ⋅ (1 − 𝑝𝑏)

𝑙𝑐+𝑙𝑑

𝑙𝑐 + 𝑙𝑑
𝐶 + [1 − (1 − 𝑝𝑏)𝑙𝑐+𝑙𝑑] ⋅ 𝑡𝑜

 

Of course, we can compute the derivative and equate it to zero to get the optimal data size, given the 

propagation times (which are embedded in 𝑡𝑜), the link speed C and the BER 𝑝𝑏. 

Some computations can be done quickly, if we approximate 𝑝 = 1 − (1 − 𝑝𝑏)
𝑙𝑐+𝑙𝑑 ≈ (𝑙𝑐 + 𝑙𝑑) ⋅ 𝑝𝑏. 

In this case, we get: 

𝜆 =
𝑙𝑑 ⋅ [1 − (𝑙𝑐 + 𝑙𝑑) ⋅ 𝑝𝑏]

𝑙𝑐 + 𝑙𝑑
𝐶 + [(𝑙𝑐 + 𝑙𝑑) ⋅ 𝑝𝑏] ⋅ 𝑡𝑜

= (
𝑙𝑑

𝑙𝑑 + 𝑙𝑐
− 𝑙𝑑 ⋅ 𝑝𝑏) ⋅

1

1
𝐶 + 𝑝𝑏 ⋅ 𝑡𝑜

 

The first term grows with 𝑙𝑑, whereas the second decreases with 𝑙𝑑. This shows the two contributions 

at work. By deriving w.r.t. 𝑙𝑑, we get the optimal length of the data part: 

𝜕

𝜕𝑙𝑑
(

𝑙𝑑
𝑙𝑑 + 𝑙𝑐

− 𝑙𝑑 ⋅ 𝑝𝑏) =
𝑙𝑑 + 𝑙𝑐−𝑙𝑑
(𝑙𝑑 + 𝑙𝑐)2

− 𝑝𝑏 

And if we equate it to 0, we get: 

𝑙𝑑 = √
𝑙𝑐

𝑝𝑏
− 𝑙𝑐. 

It makes perfect sense that the optimal length decreases when the BER increases. For instance, con-

sidering 𝑙𝑐 = 16, 𝑝𝑏 = 10
−4, we get  𝑙𝑑 = √16 ⋅ 104 − 16 = 400 − 16 = 384 bits. 

 

 


